
ADOBE® CREATIVE CLOUD® 2014

USING THE ADOBE
EXTENSION SDK

 2014 Adobe Systems Incorporated. All rights reserved.

Using the Adobe Extension SDK

Adobe, the Adobe logo, Creative Cloud, Creative Suite, Dreamweaver, Fireworks, Flash, Flex, InDesign, InCopy, Illustrator,
Photoshop, Premiere, and Prelude are either registered trademarks or trademarks of Adobe Systems Inc. in the United
States and/or other countries. Microsoft and Windows are registered trademarks or trademarks of Microsoft Corporation
in the United States and/or other countries. Apple, Mac OS, and Macintosh are trademarks of Apple Computer, Inc.,
registered in the United States and other countries. Java and Sun are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and other countries. All other trademarks are the property of their respective
owners.

The information in this document is furnished for informational use only, is subject to change without notice, and should
not be construed as a commitment by Adobe Systems Inc. Adobe Systems Inc. assumes no responsibility or liability for
any errors or inaccuracies that may appear in this document. The software described in this document is furnished under
license and may only be used or copied in accordance with the terms of such license.

Adobe Systems Inc., 345 Park Avenue, San Jose, California 95110, USA.

 3

1 Getting Started with the Adobe Extension SDK

The Adobe® Extension SDK is a set of libraries that make it possible to build HTML/JavaScript extensions
for Creative Cloud® 2014 applications. Developers can include these libraries in their projects in order to
create cross-application plug-ins and Add-ons.

CC 2014 supports the new HTML/JavaScript framework, which allows you to access the ExtendScript DOM
of the host application directly. The extension is delivered as a set of HTML, JavaScript, and CSS files that
run in an embedded browser in the host application.

The earlier extension model, based on Flash®/Flex®/ActionScript® and AIR® 2.0 API, is deprecated in
Creative Cloud. Support has already been removed in the CC 2014 release of Photoshop®, and will be
removed from other applications in upcoming releases. It is strongly recommended that you use the new
model, and port existing Flash-based extensions to the new model. Flash-based extension will continue to
run as before in versions CS5.x and CS6 of their host applications.

This document describes how to use the HTML/JavaScript model; for details of the previous model, and
information on how to migrate existing extensions to the new model, see the documentation for the
previous release.

About Adobe Application Extensions
This section provides an overview of the Adobe application extensibility technology, which provides a
common infrastructure for development and deployment of extensions that work across a set of
supported Adobe desktop applications. An Adobe Application Extension is a set of files that together
extend the capabilities of one or more Adobe desktop applications. Developers can use extensions to add
services and to integrate new features across the applications in the suite.

The Adobe Extension SDK provides developers with a consistent platform in which to develop and deploy
extensions across the suite. Adobe Application Extensions run in much the same way in different Adobe
desktop applications, providing users with a rich and uniform experience.

Adobe Application Extensions use HTML and JavaScript to create cross-platform user interfaces.
Extensions have access to the host application's scripting interface, and can use the host’s scripting DOM
to interact with the application. ExtendScript is Adobe’s extended version of ECMA JavaScript. The host
applications that have ExtendScript DOMs are packaged with the ExtendScript Toolkit, which allows you to
develop and debug ExtendScript code.

Tight integration with the desktop applications allows extensions to be controlled as if they were built into
the host applications. For example, extensions are invoked from the application’s menu and, depending
on the type of extension, can be docked, undocked, and provide fly-out menus. Users can add or remove
extensions quickly and easily to customize Adobe desktop applications to their needs.

Developer prerequisites

This document assumes that a developer of HTML extensions is familiar with HTML, CSS, JavaScript, and
the DOMs of the host applications where your extensions will be running. Knowledge of jQuery and
node.js can also be useful. See suggested “Learning resource links” on page 7.

CHAPTER 1: Getting Started with the Adobe Extension SDK Anatomy of an HTML/JavaScript extension 4

If you want to develop hybrid extensions (that is, extensions that combine an HTML/JavaScript panel with
a native plug-in for the host application) you should have a good understanding of C/C++ as well as the
SDKs of the host applications you will be targeting; for more information, see Chapter 6, “Creating a Hybrid
Extension."

Adobe application extensibility architecture

The Adobe application extensibility architecture is designed to make it easy to develop and deploy
extensions. This section describes the components and explains how they work together to run
extensions.

Adobe desktop applications that enable extensibility (such as Photoshop and Illustrator®) link to the
extensibility architecture through a native library. This library performs the standard tasks involved in
listing, invoking, and communicating with services, and in requesting defined actions that are executed in
the host.

The integrated applications are made aware of the extensions (services or extended features) available to
them by the Adobe Extension Manager. This key component in the extensibility infrastructure runs on the
client machine along with the products, and provides a common way to manage extensions across the
suite.

Underlying technologies

Extension technology is built on the Common Extensibility Platform (CEP). The current release is 5.0.

NOTE : CEP was formerly named Creative Suite Extensible Services, or CSXS, so you will sometimes see "csxs"
in names in the API and file structure.

CEP 5.0 uses CEF3, a multi-process implementation that uses asynchronous messaging to communicate
between the main application process and one or more render processes (WebKit + V8 JavaScript engine).
It uses the official Chromium Content API, thus giving performance similar to Google Chrome.

CEP 5.0 supports persistent cookies stored in the user's file system:

 In Windows: C:\Users\<user>\AppData\Local\Temp\cep_cookies

 In Mac OS X: /Users/<user>/Library/Logs/CSXS/cep_cookies

The CEP HTML Engine does not restrict the use of extension JavaScript libraries. As long as a library can be
used in CEF Client or Chrome browser, it should be usable in CEP HTML Engine.

For a description of features supported by CEP, see this blog:

http://blogs.adobe.com/cssdk/2014/04/introducing-cep-5.html

Anatomy of an HTML/JavaScript extension
HTML5 extensions are packaged as ZXP files, in the same way as Flash-based extensions. Extension
Manager CC 2014 supports the installation and management of all ZXP extensions. See Chapter 4,
“Packaging and Signing your Extension for Deployment." You can distribute your ZXP files privately or
through Adobe Exchange.

http://blogs.adobe.com/cssdk/2014/04/introducing-cep-5.html
https://www.adobeexchange.com/

CHAPTER 1: Getting Started with the Adobe Extension SDK Extension management 5

A deployed Adobe Application Extension has these components:

Extension management
CEP is integrated with Adobe desktop applications and determines what extensions should be loaded in
an application, based on the information provided in each extension’s manifest file. To specify or change
this information, you edit the project properties. If you make changes to an extension that was previously
loaded, you must restart the host application in order to load the updated version of the extension.

Users can install your packaged and signed Adobe Application Extension through the Extension Manager;
see Chapter 4, “Packaging and Signing your Extension for Deployment." The Extension Manager installs all
extensions in a common location, the extensions/ folder, that all the Adobe desktop applications can
access.

 The name of the CEP root folder (<CEP_root>) depends on the version; for Creative Cloud 2013, it is
CEPServiceManager4. For Creative Cloud 2014, it is CEP.

 The exact location of the folder is platform-specific:

File or Folder Description

MyExtension.html The page that defines your extension UI. It typically contains JavaScript code
that provides behavior and allows it to communicate with the host application
and with the extensibility infrastructure (CEP).

See the Chapter 2, “" for basic information on creating an extension project.

CSInterface.js
Vulcan.js

You must include these CEP JavaScript libraries in the script on your HTML
page in order to to access application and CEP information. The Vulcan library
implements the IPC Toolkit, which allows you to send and receive messages
between applications. (These correspond to the former Flex CSXS, CEP IMS,
and Vulcan libraries.)

 The CEP JavaScript HTML engine provides access to the local file system
and to native processes; see Chapter 8, “CEP Engine JavaScript Extension
Reference." These functions are part of the JavaScript DOM, and can be
used like any other built-in methods and functions. You do not need to
include any special libraries.

CSXS/manifest.xml The manifest, a configuration file that lists the host applications that can load
the extension and the supported locales, so that the correct resources can be
used. See Chapter 3, “Creating a Manifest File."

icon_*.png Optional icons used to represent the extension when docked. You can provide
icons for different states (normal, rollover, or disabled). For targets that support
color themes, you can provide icons for different themes (light or dark). Specify
these as part of the configuration.

locale/*.* Optional folder containing localized string resources. A default localization file,
messages.properties, stores key-value pairs that map UI strings to resources.
Each specific locale folder contains a messages.properties file for that locale.

https://github.com/Adobe-CEP/CEP-Resources/blob/master/CSInterface.js
https://github.com/Adobe-CEP/CEP-Resources/blob/master/Vulcan.js

CHAPTER 1: Getting Started with the Adobe Extension SDK About the Adobe Extension SDK 6

 In Windows:
(Win32) C:\Program Files\Common Files\Adobe\<CEP_root>\extensions\
(Win64) C:\Program Files (x86)\Common Files\Adobe\<CEP_root>\extensions\

 In Mac OS X: /Library/Application Support/Adobe/<CEP_root>/extensions/

Within the extensions/ folder, extensions are organized by the assigned name (that is, the bundle
identifier, not the display name that appears in the host application's Window > Extensions menu). You
can remove an extension through the Extension Manager's UI.

About the Adobe Extension SDK
Extension developers should be familiar with HTML, JavaScript, and CSS; and have at least basic
knowledge about Adobe Product Extensibility.

The Adobe Extension SDK includes the Common Extensibility Platform (CEP) library, which provides a set
of core services that you can use to send events to other extensions, execute ExtendScript code, and
discover information about the host application environment.

To create HTML/JavaScript extensions for CC 2014, you must use CEP 5.

 The CEP JavaScript HTML engine provides access to the local file system and to native processes. There
is no need to include this library, as it is integrated into CEP 5. For complete details of the access
functions, see Chapter 8, “CEP Engine JavaScript Extension Reference."

 Include these JavaScript libraries in your extension project:

CSInterface.js Implements the control interface for extensions
Vulcan.js Implements the IPC Toolkit for interapplication messaging.

Development environment requirements

A specialized development environment is not yet available for the Adobe Extension SDK. The SDK
provides CEP libraries, documentation, and a command-line tool for packaging. You can use your preferred
text editor to create the required configuration files, using the information provided in this document.

To create and run extensions that you create with the Adobe Extension SDK, you must have installed:

 Adobe Extension Manager CC 2014

 At least one of the Adobe Creative Cloud 2014 desktop applications that supports HTML/JavaScript
extensions.

 Adobe ExtendScript Toolkit (installed with host applications that have an ExtendScript DOM)

Supported applications

The following Adobe desktop applications support CEP-based extensions and IPC interapplication
messaging. The Creative Suite releases of these products support only Flash-based extensions. The

https://github.com/Adobe-CEP/JavaScript-API/blob/master/CSInterface.js
https://github.com/Adobe-CEP/CEP-Resources/blob/master/Vulcan.js

CHAPTER 1: Getting Started with the Adobe Extension SDK Learning resource links 7

Creative Cloud releases support HTML5/JavaScript extensions; the Flash/ActionScript model is
deprecated, and support is being removed.

Learning resource links
HTML5/ CSS3

Application Host name

InCopy® AICY

InDesign® IDSN

Illustrator ILST

Photoshop / Photoshop Extended
(HTML extensions only in CC 2014 release)

PHXS

Prelude® PRLD

Premiere® Pro PPRO

Dreamweaver® (Flash extensions only) DRWV

Flash® Pro (HTML extensions only) FLPR

AfterEffects®
(Not integrated with Extension Manager)

AEFT

w3.org HTML/CSS Specifications

W3Schools.com HTML5 Tutorials
CSS Tutorials
CSS 3 Tutorials

Lnda.com HTML-Essential-Training
HTML5 Structure Syntax and Semantics

Codecademy.com Building blocks of web development with HTML and CSS

HTML5 Rocks Resources

http://w3schools.com
http://www.w3schools.com/html/default.asp
http://lynda.com
http://lynda.com
http://www.lynda.com/HTML-tutorials/HTML-Essential-Training-2012/99326-2.html
http://www.lynda.com/HTML-5-tutorials/HTML5-Structure-Syntax-and-Semantics/77585-2.html
http://www.codecademy.com
http://www.codecademy.com/tracks/web
http://www.html5rocks.com/en/resources
http://www.w3.org
http://www.w3.org/standards/webdesign/htmlcss
http://www.w3schools.com/css/default.asp
http://www.w3schools.com/css/css3_intro.asp

CHAPTER 1: Getting Started with the Adobe Extension SDK Learning resource links 8

JavaScript

Query

node.js

JavaScript Language Specification

W3Schools.com JavaScript Tutorials

Mozilla Network Developer (MND) A Re-Introduction to JavaScript

Douglas Crockford On JavaScript

Lynda.com Introducing the JavaScript Language
JavaScript-Essential-Training
JavaScript and JSON
JavaScript Templating

Codecademy.com JavaScript Training

jQuery.com API Documentation

jQAPI - Alternative jQuery Documentation Browser

learn.jquery.com How jQuery Works

 W3Schools.com jQuery Tutorials

Learningjquery.com Great Ways to Learn jQuery

Lynda.com jQuery Essential Training

nodejs.org API Manual & Documentation

Lynda.com Node.js Essential Training

LeanPub.com JavaScript and Node FUNdamentals

eBooks Mastering node.js
Mixu’s Node book
NodeBeginner.org
Node: Up and Running

http://www.ecma-international.org/ecma-262/5.1/
http://w3schools.com/
http://www.w3schools.com/js/default.asp
https://developer.mozilla.org/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript
http://yuiblog.com/crockford/
http://lynda.com/
http://www.lynda.com/JavaScript-tutorials/Introducing-JavaScript-Language/123563-2.html
http://www.lynda.com/JavaScript-tutorials/JavaScript-Essential-Training/81266-2.html
http://www.lynda.com/JavaScript-tutorials/JavaScript-JSON/114901-2.html
http://www.codecademy.com/
http://www.codecademy.com/tracks/javascript
http://jquery.com/
http://api.jquery.com/
http://learn.jquery.com/
http://learn.jquery.com/about-jquery/how-jquery-works/
http://w3schools.com/
http://www.w3schools.com/jQuery
http://www.learningjquery.com/
http://www.learningjquery.com/2010/07/great-ways-to-learn-jquery/
http://lynda.com/
http://www.lynda.com/jQuery-tutorials/jQuery-Essential-Training/48370-2.html
http://nodejs.org/
http://www.nodejs.org/api/
http://lynda.com/
http://www.lynda.com/JavaScript-tutorials/Nodejs-Essential-Training/141132-2.html
http://leanpub.com/
http://leanpub.com/jsfun
http://www.lynda.com/Web-Interaction-Design-tutorials/JavaScript-Templating/156166-2.html
http://github.com/visionmedia/masteringnode
http://github.com/visionmedia/masteringnode
http://book.mixu.net/node/
http://www.nodebeginner.org/
http://chimera.labs.oreilly.com/books/1234000001808/index.html

CHAPTER 1: Getting Started with the Adobe Extension SDK Learning resource links 9

ExtendScript and Adobe SDKs

C/C++

Adobe Scripting Center Adobe InDesign
Adobe Illustrator
Adobe Photoshop
Premiere Pro

Adobe Host Applications SDKs Adobe InDesign
Adobe Illustrator
Adobe Photoshop
Premiere Pro

cplusplus.com

 Learncpp.com

Lynda.com C/C++ Essential Training

Books C++ Primer
Programming: Principles and Practice Using C++
 Effective C++
Effective STL
 More Effective C++
Modern C++ Design

http://www.adobe.com/devnet/scripting.html
http://www.adobe.com/devnet/indesign/documentation.html#idscripting
http://www.adobe.com/devnet/indesign/documentation.html#idscripting
http://www.adobe.com/devnet/illustrator/scripting.html
http://www.adobe.com/devnet/illustrator/scripting.html
http://www.adobe.com/devnet/photoshop/scripting.html
http://www.adobe.com/devnet/photoshop/scripting.html
http://www.adobe.com/devnet.html
http://www.cplusplus.com/
http://www.learncpp.com/
http://www.adobe.com/devnet/indesign.html
http://lynda.com/
http://www.lynda.com/Eclipse-tutorials/CC-Essential-Training/94343-2.html
http://www.amazon.com/Primer-5th-Edition-Stanley-Lippman-ebook/dp/B0091I7FEQ/ref%3Dtmm_kin_title_0
http://www.adobe.com/devnet/illustrator.html
http://www.adobe.com/devnet/photoshop.html
http://www.adobe.com/devnet/premiere.html
http://www.amazon.com/Programming-Principles-Practice-Using-C/dp/0321543726
http://www.amazon.com/Programming-Principles-Practice-Using-C/dp/0321543726
http://www.amazon.com/Effective-Specific-Improve-Programs-Designs-ebook/dp/B004V4420U/ref%3Dtmm_kin_title_0
http://www.amazon.com/Effective-STL-Addison-Wesley-Professional-Computing-ebook/dp/B004V4432W/ref%3Dtmm_kin_title_0
http://www.amazon.com/More-Effective-Improve-Programs-Designs-ebook/dp/B004VSMDNY/ref%3Dtmm_kin_title_0
http://www.amazon.com/Modern-Design-Programming-Patterns-In-Depth-ebook/dp/B00AU3JUHG/ref%3Dtmm_kin_title_0

 10

2 Running and Debugging your Extension

Once you have created the project you can run the extension within your chosen host application.
Because it is still in development, your extension is unsigned, but if you set up the debug environment
correctly, you can load and run it in the host application, and debug it in the brower using Remote
Debugging.

When the environment is set up, you can deploy your extension to the common location so that the host
application can automatically load it on launch. You can then invoke your extension and debug it in the
browser.

Setting up the debug environment
Before you run for the first time, you must let the host application know that you are still in development,
so that it won't expect your extension to be signed. You do this by setting the debug mode flag in a
platform-specific configuration file, as described here.

CEP5 supports remote debugging of HTML extensions in browsers that support the Remote Debugging
protocol, such as the latest versions of Google Chrome, Safari, Mozilla Firefox, and Opera. You must ensure
that the host application and your browser are set up to use the same TCP port for debugging
communication.

Setting the debug mode flag

To run an unsigned extension in the target host application (which you typically need to do for
debugging) you must set an OS-specific flag. The location of this flag depends on which version of the
host application you are targeting for your extension.

Editing the flag in Windows:

1. Choose Run from the Windows Start menu, and enter regedit to open the registry editor.

2. Navigate to the key
HKEY_CURRENT_USER\Software\Adobe\CSXS.5

3. Choose Edit > New > String Value. Enter the Name key PlayerDebugMode , and set Data to 1 to
enable debug mode.

4. Close the registry editor.

Editing the flag in Mac OS:

1. Navigate to the folder <user>/Library/Preferences

2. Find the property list (PLIST) file:
com.adobe.CSXS.5.plist

3. Open this file with the XCode Property List editor, or the PlistBuddy command-line tool.

CHAPTER 2: Running and Debugging your Extension Setting up the debug environment 11

4. Change value for the key PlayerDebugMode to 1 to enable debug mode as described below, and save
the file.

NOTES:

 If this file is read-only, you must add write permission for the user before you can update it. To do this,
right click on the file and select Get Info > Sharing & Permissions.

 In OS X 10.9 Apple introduced a caching mechanism for property list files. This means that property
modifications do not take effect immediately. To force you modification to take effect, open the
Terminal application and enter this command:

sudo killall cfprefsd

Editing in XCode

Open Xcode (Normally found in the Applications folder) and choose File > Open. Locate the property list
and click Open. If the PlayerDebugMode key already exists make sure its value is set to 1. If not:

 Hover over any entry and click Add (+) .

 Enter “PlayeDebugMode” as the key name.

 Set the key type to “String”.

 Enter “1” as the value.

When the key has the correct value, save the file.

Editing in PlistBuddy

Open the Terminal application (normally stored in the /Applications/Utilities folder), and enter this
command to print the content of the property list file and check if the PlayerDebugMode key already
exists:

/usr/libexec/PlistBuddy -c “print” ~/Library/Preferences/com.adobe.CSXS.5.plist

The output should look like this:

Dict {
LogLevel = 1

}

 If the key already exists, use this command to set the flag:

/usr/libexec/PlistBuddy -c “set PlayerDebugMode 1”
~/Library/Preferences/com.adobe.CSXS.5.plist

 If not, use this command to create and set the flag:

/usr/libexec/PlistBuddy -c “add PlayerDebugMode String 1”
~/Library/Preferences/com.adobe.CSXS.5.plist

 To confirm that the entry has been added successfully, print the content of the property list file again.
It should now have the new key:

Dict {
PlayerDebugMode = 1
LogLevel = 1

}

CHAPTER 2: Running and Debugging your Extension Setting up the debug environment 12

Setting up remote debugging

Debugging communication between the host application and the browser’s development tools goes
through a TCP port. You define which port to use in your extension’s .debug configuration file. You must
create this XML file in your extension project’s root folder, and define the port number to use for
debugging communication for each Adobe host application that your extension supports.

First, create an empty file name .debug in the extension’s root folder according to your platform, then add
the TCP port mapping.

Creating an empty file

 In Mac OS X

Open the Terminal application, change the current working folder to the root folder of your extension,
and use this command to create an empty file named ".debug":

touch .debug

Files whose names start with a dot are hidden. If you want to make this file visible in order to edit it,
use this command, then restart Finder:

defaults write com.apple.finder AppleShowAllFiles YES
sudo killall Finder

(To hide files again, use the same command with NO instead of YES.)

 In Windows

In a command shell, change the current working folder to the root folder of your extension, and use
this command to create an empty file named ".debug":

copy con .debug

Press CTRL Z to complete the file creation.

Set up port mapping

Open the .debug file with your preferred text editor, and add this XML code, with a <Host> element for
each supported host application:

<?xml version="1.0" encoding="UTF-8"?>
<ExtensionList>

<Extension Id="extensionID">
<HostList>

<Host Name="hostID" Port="portNum"/>
</HostList>

</Extension>

CHAPTER 2: Running and Debugging your Extension Deploying an unsigned extension 13

</ExtensionList>

For example, for an extension that supports Photoshop Extended and InDesign, the XML would look
something like this:

<?xml version=”1.0” encoding=”UTF-8”?>
<ExtensionList>

<Extension Id=”com.myDns.myProductName.Panel1”>
<HostList>

<Host Name=”PHXS” Port=”8000”/>
<Host Name=”IDSN” Port=”8001”/>

</HostList>
</Extension>

</ExtensionList>

For a bundle of extensions, add an <Extension> element for each extension in the bundle.

Deploying an unsigned extension
Once the debugging environment and configuration is set up, you can run the extension in its host
application and debug it in the browser.

To run and debug your extension in its target application, you must deploy it by copying the ZXP package
to one of the deployment folders that CEP looks in to find available extensions.

 These are the system-wide deployment folders for all users:

 In Windows:
C:\Program Files\Common Files\Adobe\CEP\extensions\

 In Mac OS:
/Library/Application Support/Adobe/CEP/extensions/

Extension > Id The unique ID of your extension, as set in the manifest. For example,
"com.myDns.myProductName.Panel1".

Host > Name The host application ID. For example, the ID for Photoshop is "PHSP".
These host IDs are defined:

After Effects AEFT

Dreamweaver DRWV

Flash Pro FLPR

Illustrator ILST

InCopy AICY

InDesign IDSN

Photoshop PHSP

Photoshop Ext PHXS

Prelude PRLD

Premiere Pro PPRO

Host > Port The TCP port number to use for debugging communication with the
browser. For example, "8000".

CHAPTER 2: Running and Debugging your Extension Debugging your extension 14

 For a specific user, these are the default locations of the deployment folder:

 In Windows:
C:\<username>\AppData\Roaming\Adobe\CEP\extensions\

 In Mac OS:
~/Library/Application Support/Adobe/CEP/extensions/

On launch, an application searches for extensions first in the system folder, then the user’s folder. If there is
a conflict in extension IDs, the last one loaded is used. If the same extension is found in different locations,
then if they have different bundle-ID versions, the latest version is used. If two extensions have the same ID
and version, the one in the system folder is used.

Debugging your extension
You can only debug an unsigned extension that is running it the host application if you have correctly set
up the debugging mode, as described in “Setting up the debug environment” on page 10.

To start a debugging session for a running host application that has loaded your extension:

 Open a browser.

 Go to http://localhost:<portNum> , using the port number you have assigned for the host
application in the .debug file. For example, http://localhost:8000.

 Invoke your HTML extension.

 When you start the host application, typically your extension’s menu (as defined in the manifest
file) appears in the Window > Extensions menu (or in the menu defined in the manifest for
InDesign/InCopy). You invoke the extension’s HTML UI in the browser by choosing the menu item.

 Some host application support invisible extensions, which run in the background and have no UI.
Such extensions are loaded on specific events, defined in the extension manifest’s <startOn>
element. To debug invisible extensions you must first invoke the event that triggers the extension
load. The JavaScript code runs in the browser.

 Start debugging the extension using the browser’s development tools. For information about using
these tools, see your browser documentation. For example,
http://developers.google.com/chrome-developer-tools/.

ExtendScript debugging and logging

During development, you can debug and test your ExtendScript code using ExtendScript Toolkit. Once it’s
intergrated into an HTML extension, however, the code is not available to the ExtendScript Toolkit. You
can, however, build log messages into your ExtendScript code for when you are in debug mode, which
allow you to monitor the ExtendScript behavior within an extension.

Your debug messages can be sent back to your extension’s JavaScript component using the event
notification system, or you can send messages directly to the browser development tool’s console

Example: Event-based debugging

This method uses CEP event-based communication to send debug information from ExtendScript code to
the HTML extension’s JavaScript DOM. It makes use of an ExtendScript external shared library,

http://developers.google.com/chrome-developer-tools/
http://localhost:
http://localhost:8000

CHAPTER 2: Running and Debugging your Extension Debugging your extension 15

PlugPlugExternalObject. See more information about event handling and the library in Chapter 5,
“Event Handling for Extensions," and Chapter 6, “Creating a Hybrid Extension."

Currently, the CC 2014 releases of Photoshop, Illustrator and Premiere Pro support
PlugPlugExternalObject; support is planned for other CC applications.

The following example illustrates how to use ExtendScript for this debugging technique.

ExtendScript component

Add a JSX file containing similar code to your extension manifest:

<ScriptPath>./jsx/[scriptName].jsx</ScriptPath>

This script creates an instance of PlugPlugExternalObject, and uses its getFileContents() method to
read and return the contents of a file. First, however, we define a function, devToolsConsoleOut(), to
create and send a custom CSXS event. At each stage of the operation, we use this function to send
information about possible problems to the HTML extension’s JavaScript DOM.

DEBUG = 1;
try {

var xLib = new ExternalObject("lib:\PlugPlugExternalObject");
}
catch(e) {

alert(e);
}

function devToolsConsoleOut(in_message)
{

if (DEBUG == 1) {
var eventObj = new CSXSEvent();
eventObj.type = "DevToolsConsoleEvent";
eventObj.data = in_message;
eventObj.dispatch();

}
}

function getFileContents(in_path) {
try {

do {
devToolsConsoleOut("Info: Entering getFileContents");
var retVal = null;
if (! in_path) {

devToolsConsoleOut("Error: Argument is null");
break;

}
if (typeof(in_path) != "string") {

devToolsConsoleOut("Error: Argument is not the correct type");
break;

}
if (in_path.length == 0) {

devToolsConsoleOut("Error: Argument is an empty string");
break;

}
var file = File(in_path)
if (! file.exists) {

devToolsConsoleOut("Error: Could not find file - " + file.fullName);
break;

}
if (! file.open()) {

CHAPTER 2: Running and Debugging your Extension Debugging your extension 16

devToolsConsoleOut("Error: Could not open file - " + file.fullName);
break;

}
retVal = file.read();
if (! file.close())
{

devToolsConsoleOut("Warning: Could not close file - " + file.fullName);
}
devToolsConsoleOut("Info: File read OK");

}
while (false);

}
catch(e) {

devToolsConsoleOut(e);
}
devToolsConsoleOut("Info: Leaving getFileContents");
return retVal;

}

JavaScript component

In the JavaScript for your HTML extension, include code like this to call the ExtendScript function and
receive the debugging messages that it sends from the ExtendScript engine.

This code registers a handler for the custom event type DevToolsConsoleEvent. It then defines a button
click function that calls the ExtendScript file-read operation, using csInterface.evalScript().

(function () {
var csInterface = new CSInterface();

function init() {

 themeManager.init();

csInterface.addEventListener("DevToolsConsoleEvent", function(event){
console.log(event.data);

});

 $("#btn_readFile").click(function () {

csInterface.evalScript("getFileContents(Folder.desktop+'/test.txt')",
contentsCallBack);

 });
}

function contentsCallBack(in_contents) {

 // do something here with the contents of the file
}
init();

}());

Example: Console-based debugging

This approach works with all Creative Cloud applications that support ExtendScript APIs.

In this example, the ExtendScript code defines a callback function, contentsCallBack, and passes it in the
call to getFileContents(). The callback logs information directly in the development-tool console.

CHAPTER 2: Running and Debugging your Extension Debugging your extension 17

ExtendScript component

DEBUG = 1;

function updateLog(in_log,in_msgType,in_msg)
{

var retVal = in_log
if (DEBUG == 1)
{

retVal[in_log.__count__+1] = {type: in_msgType.toLowerCase(), msg:in_msg}
}
return retVal;

}

function getFileContents(in_path) {
try {

do {
var retVal = {fileContents: null,log: {}};
updateLog(retVal.log,"Info","Entering getFileContents");
if (! in_path) {

updateLog(retVal.log,"Error","Argument is null");
break;

}
if (typeof(in_path) != "string") {

updateLog(log,"Error","Argument is not the correct type");
break;

}
if (in_path.length == 0) {

updateLog(retVal.log,"Error","Argument is an empty string");
break;

}
var file = File(in_path)
if (! file.exists) {

updateLog(retVal.log,"Error","Could not find file: " + file.fullName);
break;

}
if (! file.open()) {

updateLog(retVal.log,"Error","Could not open file: " + file.fullName);
break;

}
retVal.fileContents = escape(file.read());
if (! file.close())
{

updateLog(retVal.log,"Warning","Could not close file: " + file.fullName);
}
updateLog(retVal.log,"Info","Read successfully file: " + file.fsName);

}
while (false);

}
catch(e) {

updateLog(retVal.log,"Error","Line "+e.line+": "+e);
}
updateLog(retVal.log,"Info","Leaving getFileContents");
return retVal.toSource()

}

JavaScript component

Below JavaScript code that could be used to control the UI of an HTML extension.

CHAPTER 2: Running and Debugging your Extension Debugging your extension 18

Pay special attention to:

1 - $("#btn_test").click method respondes to a "click" event in the UI (button) and triggers the ExtendScript
function getFileContents

2 - contentsCallBack callback function that handles the return value of getFileContents and outputs

(function () {
var csInterface = new CSInterface()

function init() {

 themeManager.init();

 $("#btn_test").click(function () {

csInterface.evalScript("getFileContents(Folder.desktop+'/test.txt')",contentsCallBack
);
 });

}

function contentsCallBack(in_resultStr) {
eval("resultObj="+in_resultStr);
for (var propName in resultObj.log) {

var logEntry = resultObj.log[propName]
switch(logEntry.type.toLowerCase())
{

case "error":
console.error(logEntry.msg);
break;

case "warning":
console.warning(logEntry.msg);
break;

case "info":
console.info(logEntry.msg);
break;

default:
console.log(logEntry.msg);

}
}
console.log("File Contents:\n"+unescape(resultObj.fileContents));

}
init();

}());

System logs

Both CEP and the underlying Chromium Embedded Framework (CEF) keep logs that can help in
debugging your Adobe extensions. The location of the log files is platform-specific:

 In Windows: C: \Users\USERNAME\AppData\Local\Temp

 In Mac OS X: ~/Library/Logs/CSXS

The CEF engine log is written to the platform-specific location, in the file cef_debug.log. (You can create
an alias for this file to access it more easily.) This log provides valuable information when an extension has

CHAPTER 2: Running and Debugging your Extension Debugging your extension 19

a problem at load time, before CEP and embedded logging begins.

CEP logging

Once an extension has been successfully loaded into a host applications, a log files with useful debug
information is created. There is a separate log file for each of the applications that support CEP extensions.
The log file names are based on the application name:

csxs<version>-<hostID>.log

For example, the InDesign the log file is named csxs5-IDSN.log.

You can set a log level in the CEP configuration that controls how much information is written to the log.
To set the log level, change the LogLevel key in the platform-specific configuration file:

 In Windows: regedit > HKEY_CURRENT_USER/Software/Adobe/CSXS.5

 In Mac OS X: ~/Library/Preferences/com.adobe.CSXS.5.plist

(See “Setting the debug mode flag” on page 10 for details of how to edit configuration keys.)

These log levels are defined:

0 - Off (No logs are generated)
1 - Error (Default logging value)
2 - Warn
3 - Info
4 - Debug
5 - Trace
6 - All

 20

3 Creating a Manifest File

Extensions created with the Adobe Extension SDK require a manifest file. The manifest is an XML file that
describes the extension, tells the Extension Manager how to install it, and gives the author control over
extension-specific options such as the extension life cycle, UI, and menus.

When you use the New Project Wizard in Extension Builder 3, the manifest is created for you. You can also
create your own, or edit an existing manifest using the editor in Extension Builder 3 or any XML editor.

You must use version 4.0 or higher for HTML/JavaScript extensions. The complete schema for the XML,
which you can use to validate the syntax, is included in the Adobe Extension SDK installation:

<Ext_SDK_root>/docs/ExtensionManifest-4.0.xsd

Adobe Extension SDK supports bundling multiple extensions into a single extension bundle, and the
manifest schema reflects this structure.

In this section we look at a simple manifest file in detail, illustrating the usage of each XML tag with
examples from the sample manifest.xml file included in the Adobe Extension SDK.

ExtensionManifest
The root element for an extension manifest XML file:

<ExtensionManifest
Version="4.0"
ExtensionBundleId="com.example.simple"
ExtensionBundleVersion="1.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
...

</ExtensionManifest>

Attributes The ExtensionBundleId attribute is an optional unique identifier for your extension bundle. Adobe
recommends using a fully qualified namespace-like name such as com.myCompany.extension.

Allowed
children

The possible child elements of ExtensionManifest are:

Author Optional. The author of this extension bundle.

Contact Optional. A contact for this extension bundle.

 Required attribute mailto.

Legal Optional. A legal notice for this extension bundle.

 Optional attribute href.

Abstract Optional. An abstract for this extension bundle.

 Optional attribute href.

ExtensionList Contains a list of extensions defined in this bundle. See details below.

http://www.w3.org/2001/XMLSchema-instance

CHAPTER 3: Creating a Manifest File ExtensionManifest 21

ExtensionList/Extension

An extension bundle can contain multiple extensions, each of which is implemented by a main HTML file.
Each extension in the bundle must be listed here in its own Extension element, each with a unique
extension identifier.

<ExtensionList>
<Extension Id="com.example.simple.extension" Version="1.0" />

</ExtensionList>

Attributes The Extension tag takes two attributes:

ExecutionEnvironment

The ExecutionEnvironment element contains information about which Adobe desktop applications will
run the extension under what conditions.

This element must list each of the Adobe host applications targeted by your extension, the supported
locales, and the runtime requirements. In this example, an extension that targets InDesign CC requires
CSXS 4.2

<ExecutionEnvironment>

<HostList>
<Host Name="IDSN" Version="11" />

</HostList>

ExecutionEnvironment Contains information about which host applications can run the extension
under what conditions. See details below.

DispatchInfoList Contains an Extension element for each of the listed extensions, each of
which contains a DispatchInfo element. See details below.

ExtensionData Optional. Contains arbitrary information about this extension. It can contain
data of any type.

 Required attribute Id associates this data with an extension defined in
the ExtensionList.

 Optional attribute Host associates the data with a specific host
application.

If you have provided localization resources (see Chapter 7, “"), you can use
the %key syntax to localize values in the ExtensionData element. Because
this section contains arbitrary information about the extension, you must
localize the entire XML content of the element, and include all of the
alternative XML files in your project:

<ExtensionData>%ExtensionData</ExtensionData>

Id A unique identifier for the extension, unique within the entire CEP system. Adobe
recommends using a reverse domain name. Other tags within the manifest use this id to
reference this extension.

Version Optional, a version identifier for this extension.

CHAPTER 3: Creating a Manifest File ExtensionManifest 22

<LocaleList>
<Locale Code="All" />

</LocaleList>

<RequiredRuntimeList>
<RequiredRuntime Name="CSXS" Version="4.2" />

</RequiredRuntimeList>

</ExecutionEnvironment>

HostList/Host

The HostList element contains a list of Host elements for all supported hosts. Each Host tag specifies a
supported Adobe desktop application.

Attributes The Host tag contains the following attributes:

LocaleList/Locale

CEP checks the License Locale of the host application against supported locales declared in an Extension’s
locale list to determine if the extension is loadable for the host application.

The LocaleList element contains a list of Locale elements for all supported locales. Each Locale tag
contains the locale code for a supported language/locale, in the form xx_XX; for example, en_US or ja_JP.
You can use the special value All to indicate that the extension supports all locales.

Use a single Locale element with the special value "All" to make your extension load in the host
application regardless the language used:

<LocaleList>
<Locale Code="All"/>

</LocaleList>

To restrict the locales your extension supports, create a Locale element for each language, whose value is
a locale code. If the application locale does not match one of those specified, the application does not load
the extension. For example, an extension with these settings loads when the application is running in US
or British English:

<LocaleList>
<Locale Code="en_US" />
<Locale Code="en_GB" />

</LocaleList>

Name Required, the host name of the host application. See “Supported applications” on page 6.

Version Required. The version or versions in which this extension will work.

A single version number specifies the minimum supported version; the extension works in
all versions greater than or equal to this version.

Specify a version range using interval notation, a comma-separated minimum and
maximum version number enclosed by inclusive, [], or exclusive, (), endpoint
indicators. You can mix endpoint types. For example, to target InDesign 7 and all versions
up but excluding version 10, use the string "[7,10)". The entire element looks like this:

<Host Name="IDSN" Version="[7,10)" />

CHAPTER 3: Creating a Manifest File ExtensionManifest 23

For information on how to localize your extension, see Chapter 7, “."

LOCALE SUPPORT NOTE: MENA ("Middle East and North Africa") support allows localization for Arabic,
Hebrew, and North African French languages in the CS6 and CC versions of InDesign, Photoshop,
Illustrator, DreamWeaver, and Acrobat. An appropriate language (such as standard French for North
African French) is automatically substituted if the MENA language is not available and the substitute is.

RequiredRuntimeList/RequiredRuntime

The RequiredRuntimes element contains a list of RequiredRuntime elements for all required runtimes;
that is, executables that must be available in order for the extension to run.

 For extensions that target CS6 or CC applications, use CSXS 4.0:

<RequiredRuntimeList>
<RequiredRuntime Name="CSXS" Version="4.0" />

</RequiredRuntimeList>

 For extensions that target CC 2014 applications, use CSXS 5.0:

<RequiredRuntimeList>
<RequiredRuntime Name="CSXS" Version="5.0" />

</RequiredRuntimeList>

DispatchInfoList/Extension/DispatchInfo

This section of the manifest determines the lifecycle and appearance of your extension. Each extension
listed in the ExtensionList element must have a corresponding Extension element in the
DispatchInfoList, containing a DispatchInfo element. The Id attribute in this Extension tag
associates it with its corresponding tag in the ExtensionList.

<DispatchInfoList>
<Extension Id="com.example.simple.extension">

<DispatchInfo >
...

</DispatchInfo>
</Extension>

</DispatchInfoList>

The DispatchInfo element contains parameters that the application needs to run the extension. This
includes information about the resources used by the extension, the lifecycle, and the UI configuration.

<DispatchInfo >
<Resources>

<MainPath>./Simple.html</MainPath>
</Resources>

<Lifecycle>
<AutoVisible>true</AutoVisible>
<StartOn>

<Event>applicationActivate</Event>
</StartOn>

</Lifecycle>

CHAPTER 3: Creating a Manifest File ExtensionManifest 24

<Geometry>
<Size>

<Height>500</Height>
<Width>400</Width>

</Size>

<MaxSize>
<Height>500</Height>
<Width>400</Width>

</MaxSize>

<MinSize>
<Height>500</Height>
<Width>400</Width>

</MinSize>
</Geometry>

</UI>
</DispatchInfo>

Attributes The DispatchInfo tag can have an optional attribute Host, in which case the parameters apply only to
that host application. Specify the application using the Host name shown in “Supported applications” on
page 6.

If a host is not specified, the element defines default values for all parameters that are not set in a
host-specific DispatchInfo element.

Resources

The Resources element contains the paths to source files that are needed to run the extension. All paths
are relative to the extension’s root directory, and must use forward-slash delimiters. Typically contains
these elements:

MainPath Contains the path to the extension's home-page HTML file.

ScriptPath Contains the path to the extension's script file, if any.

CHAPTER 3: Creating a Manifest File ExtensionManifest 25

Lifecycle

The Lifecycle element specifies the behavior at startup and shutdown. It can contain these elements:

UI

The UI element configures the appearance of the extension window. It can contain these elements:

AutoVisible Boolean, true to make the extension’s UI visible automatically when launched.

StartOn/Event A set of events that can start this extension. Use fully-qualified event identifiers; for
example:

<Lifecycle>
<StartOn>

<Event>applicationActivate</Event>
</StartOn>

</Lifecycle>

You can register for any of the CEP/CSXS standard events or any arbitrary CSXSEvent
sent from a C++ plug-in. The standard events (which are not necessarily supported by
all applications) are:

 documentAfterActivate: When a document has been activated.

 documentAfterDeactivate: When the active document has been deactivated.

 applicationActivate: When the application gets an activation event from the
OS.

 applicationBeforeQuit: When the application is about to shut down.

 documentAfterSave: After the document has been saved

Type The type of the extension controls the kind of window that displays its UI. Value is one of:

Panel
ModalDialog
Modeless

Menu The label of the menu item for this extension in the host application’s Window >
Extensions menu.

The value can be a localization key; see Chapter 7, “."

If not included, no menu item is added for the extension, and you are responsible for
starting it in response to some event, by providing a Lifecycle/StartOn/Event
element.

CHAPTER 3: Creating a Manifest File ExtensionManifest 26

Geometry Specifies the preferred geometry of the extension window. The host application may not
support all of these preferences, and the values can be overwritten for an AIR extension,
using the AIR window API.

The value can be a localization key; see “Localizing the extension’s manifest file” on
page 53.

The example above shows the possible elements.

If you provide a size element, both the width and height value must be provided.

Icons/Icon The Geometry element can contain this list, which identifies icons used for the extension
in the host application’s UI; for example, when docking an extension of type Panel.

Each Icon element contains the path to the icon file (relative to the extension’s root
directory), and the required attribute Type, which is one of:

Normal
Disabled
Rollover

The path value can be a localization key; see “Localizing the extension’s manifest file” on
page 53.

 27

4 Packaging and Signing your Extension for
Deployment
The Extension Manager package file which allows you to install the extension you are developing on
machines other than the one you are currently using (across platforms), to share the extension with other
users, and to distribute it to customers.

Extension Manager requires that the package be signed and timestamped. See “How signing works” on
page 29.

The package format
An Extension Manager package uses the ZXP format. This is an archive file with the extension .zxp, which
contains:

 A copy of the CSXS folder containing the manifest.xml file.

 A copy of the folder containing the extension-panel HTML file and any dependant files.

 A copy of any other optional resources used by the extension, such as icons and localization files. For a
hybrid extension, it must include the resource files for the native plug-in or scripting component.

 A file named mimetype, generated by the packaging and signing process.

Creating the deployment package
Adobe provides a number of packaging tools that help you to configure and create the ZXP package for
your HTML/JS extension.

 If you have a producer account with Adobe Exchange, the Adobe Exchange Packager is available from
http://www.adobeexchange.com/resources.

 For all types of extensions and plug-ins, you can use the lower-level ZXPSignCmd, a command-line tool
available from Adobe Labs.

Using the CC Extension Signing Toolkit
Adobe provides a command-line tool, ZXPSignCmd, that you can use to package and sign extensions so
they can be installed in Adobe desktop applications using Extension Manager. See the Adobe Extension
SDK page to download the toolkit for your platform.

After testing your extension thoroughly, you must package and sign your extension so users can install it
in their systems using Extension Manager. To prepare for this step, it is recommended that you copy all of
the files in the Output folder for your extension to a staging folder for ease of packaging. Make sure the
staging folder contains a subfolder named CSXS/, which contains the manifest.xml file:

<staging_folder>/CSXS/manifest.xml

You can add any extra resources to the root or to a folder within the root folder. Within the manifest file,
references to these resources should use pathnames that are relative to the root. For example, if your main

http://labs.adobe.com/downloads/extensionbuilder3.html
http://labs.adobe.com/downloads/extensionbuilder3.html
http://www.adobeexchange.com/resources
http://labs.adobe.com/downloads/extensionbuilder3.html

CHAPTER 4: Packaging and Signing your Extension for Deployment Using the CC Extension Signing Toolkit 28

panel HTML file is located at <staging folder>/Simple.html, the path in the manifest should be
specified as ./Simple.html.

For a hybrid extension, you must package and sign the Adobe Extension SDK component separately, then
take some additional steps to package that with the native plug-in or scripting component; see
“Packaging a hybrid extension” on page 31.

Using ZXPSignCmd

You can use this tool to create a self-signed certificate, create a signed ZXP package, or verify an existing
ZXP package.

 To create a signed package:

ZXPSignCmd -sign <inputDir> <outputZxp> <p12> <p12Password> [options]

 To verify a ZXP package:

ZXPSignCmd -verify <zxp>|<extensionRootDir> [options]

 To create a self-signed certificate:

ZXPSignCmd -selfSignedCert <countryCode> <stateOrProvince> <organization>
<commonName> <password> <outputPath.p12> [options]

inputDir The path to the folder containing the source files to package.

outputZxp The path and file name for the ZXP package.

p12 The signing certificate; see “How signing works” on page 29.

p12Password The password for the certificate.

options -tsa <timestampURL> The timestamp server. For example:
https://timestamp.geotrust.com/tsa

zxp The path and file name for the ZXP package.

extensionRootDir The path to the folder containing the deployed ZXP.

options -certinfo If supplied, prints information about the
certificate, including timestamp and
revocation information.

-skipOnlineRevocation
Checks

If supplied, skips online checks for certificate
revocation when -certinfo is set.

-addCerts <cert1>
<cert2> ...

If supplied, verifes the certificate chain and
assesses whether the supplied
DER-encoded certificates are included .

countryCode
stateOrProvince
organization
commonName

The certificate identifying information.

password The password for the new certificate.

https://timestamp.geotrust.com/tsa

CHAPTER 4: Packaging and Signing your Extension for Deployment How signing works 29

Example

If you already have a certificate, you can use that. Otherwise, begin by creating a self-signed certificate:

./ZXPSignCmd -selfSignedCert US NY MyCompany MyCommonName abc123 MyCert.p12

This generates a file named MyCert.p12 in the current folder. You can use this certificate to sign your
extension:

./ZXPSignCmd -sign myExtProject myExtension.zxp MyCert.p12 abc123

This generates the file myExtension.zxp in the current folder, adding these two files to the packaged and
signed extension in the final ZXP archive:

 mimetype

A file with the ASCII name of mimetype that holds the MIME type for the ZIP container
(application/vnd.adobe.air-ucf-package+zip).

 signatures.xml

A file in the META-INF directory at the root level of the container file system that holds digital
signatures of the container and its contents.

How signing works
The signature verifies that the package has not been altered since its packaging. When the Extension
Manager tries to install a package, it validates the package against the signature, and checks for a valid
certificate. For some validation results, it prompts the user to decide whether to continue with the
installation. In addition, CEP checks for a valid certificate each time a host application tries to run an
extension.

Certificates used to cryptographically sign documents or software commonly have an expiration duration
between one and four years, and a certificate with a very long lifetime can be prohibitively expensive. If
the certificate used to sign the extension has expired and it has no valid time stamp, the extension cannot
be installed or loaded. There is no warning or notification to the user before the signature expires. To make
your extension available to users again, you would have to repackage it with a new certificate.

A valid timestamp ensures that the certificate used to sign the extension was valid at the time of signing.
For this reason, you should always add a time stamp to the signature when you package and sign your

outputPath.p12 The path and file name for the new certificate.

options -locality <code> If supplied, the locale code to associate with
this certificate.

-orgUnit <name> If supplied, an organizational unit to
associate with this certificate.

-email <addr> If supplied, an email address to associate
with this certificate.

-validityDays <num> If supplied, a number of days from the
current date-time that this certificate
remains valid.

CHAPTER 4: Packaging and Signing your Extension for Deployment How signing works 30

extension. A timestamp has the effect of extending the validity of the digital signature, as long as the
certificate that you use to add the time stamp is valid at the moment the time stamp is added. You can use
a self-signed certificate for adding the time stamp.

These are the possible validation results:

To sign extensions, a code-signing certificate must satisfy these conditions:

 The root certificate of the code-signing certificate must be installed in the target operating system by
default. This can vary with different variations of an operating system. For example, you may need to
check that your root certificate is installed into all variations of Win XP, including home/professional,
SP1, SP2, SP3, and so on.

 The issuing certificate authority (CA) of the code-signing certificate must permit you to use that
certificate to sign extensions.

To make sure a code-signing certificate satisfies these conditions, check directly with the certificate
authority that issues it.

The following CAs and code-signing certificates are recommended for signing extensions:

 GlobalSign

 ObjectSign Code Signing Certificate

 Thawte

 AIR Developer Certificate

 Apple Developer Certificate

 JavaSoft Developer Certificate

Signature Signing certificate Extension Manager action CEP action

No signature N/A Shows error dialog and
aborts installation

Extension does not run

Signature invalid Any certificate Shows error dialog and
aborts installation

Extension does not run

Certificate used to
sign has expired,
and no time
stamp

Any certificate Shows error dialog and
aborts installation

Extension does not run

Certificate used to
sign has expired,
but has a valid
time stamp

Any certificate Silently installs extension Extension runs normally

Signature valid Adobe certificate Silently installs extension Extension runs normally

OS-trusted certificate Silently installs extension Extension runs normally

other certificate Prompts user for permission
to continue the installation

Extension runs normally

http://www.globalsign.com/developer/code-signing-certificate/index.htm
http://www.thawte.com/code-signing/

CHAPTER 4: Packaging and Signing your Extension for Deployment Packaging a hybrid extension 31

 Microsoft Authenticode Certificate

 VeriSign

 Adobe AIR Digital ID

 Microsoft Authenticode Digital ID

 Sun Java Signing Digital ID

Packaging a hybrid extension
For a hybrid extension:

 Package and sign the Adobe Extension SDK portion separately, as described in “Creating the
deployment package” on page 27.

 Prepare the native plug-in or scripting component for packaging as described in the
application-specific SDK.

When all of the components are ready:

1. Create a new staging folder.

2. Add the signed package for the Adobe Extension SDK extension component to the root of the staging
folder.

3. Add the application-specific files to the staging folder in their platform-specific subfolders.

4. Add the MXI configuration file to the root of the staging folder; see “Configuring a hybrid extension”
on page 31.

For example, for a hybrid extension that includes a Adobe Extension SDK extension component is
named MyExtension, and a C++ plug-in component named MyPlugin that has Mac OS and Windows
versions:

/staging
/mac/MyPlugin.plugin
/win32/MyPlugin.8li
/win64/MyPlugin.8li
/MyExtension.zxp
/MyExtension.mxi

5. Run the ZXPSignCmd tool on the staging folder to bundle and sign its contents into a single ZXP
archive.

Configuring a hybrid extension

Extension Manager requires an XML configuration file named projectName.MXI to correctly install the
extension and all its components in the user's environment. You must create this MXI file and customize it
to describe your desired configuration.

When you package your hybrid extension for deployment, the MXI file must be included alongside the
packaged and signed Adobe Extension SDK extension component. See “Packaging a hybrid extension” on
page 31. For more information about editing the MXI file, see the document Packaging Extensions with
Adobe Extension Manager (http://www.adobe.com/go/em_file_format).

http://www.verisign.com/products-services/security-services/code-signing/digital-ids-code-signing/
http://www.adobe.com/go/em_file_format
http://www.adobe.com/go/em_file_format

CHAPTER 4: Packaging and Signing your Extension for Deployment Installing a packaged and signed extension 32

The MXI file looks like this:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<macromedia-extension name="com.example.myextension" requires-restart="true"

version="1.0">

<author name="Adobe Developer Technologies"/>
<description><![CDATA[The description.]]></description>
<license-agreement><![CDATA[Legal Text.]]></license-agreement>

<products>
<product familyname="Photoshop" maxversion="" primary="true" version="12.0"/>

</products>

<files>
<file destination="" file-type="CSXS" products="" source="MyExtension.zxp"/>
<!-- ADD APPLICATION SPECIFIC FILE HERE -->

</files>

</macromedia-extension>

 The file includes the display strings that Extension Manager uses when the extension has been
installed, such as the author and description; these can be copied from the ones in the manifest, if
those are already set.

 The <files> set must include the <file> element for theAdobe Extension SDK extension
component, of file-type "CSXS". In this case there is no need to indicate the destination; Extension
Manager knows about the shared installation location used by Adobe extensions.

 You must add a <file> element for each resource file in the cs_resources/ folder. The Extension
Manager copies only those files that are specified in the MXI file to the host application. Each
application-specific <file> element must include the destination and platform attributes. For
example:

<files>
<file destination="" file-type="CSXS" products="" source="MyExtension.zxp"/>
<file destination="$automate" platform="mac" products="Photoshop"

source="cs_resources/mac/MyPlugin.plugin"/>
<file destination="$automate" platform="win" products="Photoshop32"

source="cs_resources/win32/MyPlugin.8li"/>
<file destination="$automate" platform="win" products="Photoshop64"

source="cs_resources/win64/MyPlugin.8li"/>
</files>

Installing a packaged and signed extension
Adobe Extension Manager, a tool that is included with all Adobe desktop applications (CS5 and higher),
installs extensions that are properly packaged and signed. Adobe Extension Manager is installed at the
same time as CS applications; you can launch it from the Start menu in Windows or the Applications folder
in Mac OS.

Using Extension Manager

To install the signed ZXP file follow these steps:

1. Open Extension Manager and click Install.

CHAPTER 4: Packaging and Signing your Extension for Deployment Installing a packaged and signed extension 33

2. Browse to the location where your ZXP file is saved, select it, and click Open to start the installation
process.

3. Extension Manager attempts to validate the package against the signature. For some validation
results, it prompts the user to decide whether to continue with the installation; for example, if it
cannot verify the publisher, you can choose to install the extension anyway; see “How signing works”
on page 29.

4. Once the installation has completed, check that your extension appears in all of the products that it
supports.

Testing extension installation

To test whether your package works properly, use Extension Manager to install your extension on your
local versions of the Adobe desktop applications.

1. Open Extension Manager and click Install.

2. Browse to the location where your ZXP file is saved, select it, and click Open to start the installation
process.

3. Extension Manager attempts to validate the package against the signature. For some validation
results, it prompts the user to decide whether to continue with the installation; for example, if it
cannot verify the publisher, the user can choose to install the extension anyway.

4. Once the installation has completed, check that your extension appears in all of the products that it
supports.

CHAPTER 4: Packaging and Signing your Extension for Deployment Installing a packaged and signed extension 34

Notice that the Extension Manager UI provides the user with information about an installed extension; this
information derives from the project properties specified in the manifest. Depending on what you have
specified, some of these fields might be blank:

To update how this information is displayed for your extension in the Extension Manager UI, you must
specify the corresponding values in your project's manifest.

Troubleshooting the installation

If your package fails to install properly:

 Verify that you have built your extension with the correct structure, and that your extension package
contains the correct files in the correct locations.

 Verify that the package has not been modified since being properly signed.

Extension property Comments

Name This is the identifying name of the extension bundle, not the display name that
appears in the Extensions menu of the host application.

Version Larger version numbers indicate newer versions.

Author name May be blank.

Description May be blank. You can specify a descriptive string, which is simply displayed in
the Description panel, or you can provide a URL, in which case the referenced
page is shown in the Description panel.

Product Your extension must support at least one host application for the extension to
be installed successfully.

CHAPTER 4: Packaging and Signing your Extension for Deployment Running an extension 35

Because the ZXP is an archive file, you can rename the package with the .zip extension to examine its
contents and verify that it contains all needed files. If you change anything in it, however, the signature no
longer matches the content, and the Extension Manager cannot load the package. If you need to make
changes, you must create and sign a new package.

Running an extension
Once your extension has been successfully installed, you can test in any of the applications specified in
your extension's manifest file. To run your extension, open the host application and choose your extension
for the list in Window > Extensions. The name that appears in this menu is the one you specified in the
manifest.

Here are some problems you might encounter when running an extension, and possible solutions. For
further help, check the known problems section in the SDK’s Readme file.

Extension does not appear in the application’s Window > Extensions menu

Verify that the extension’s manifest.xml file is set up correctly:

 Verify that the Host ID for your application is correct. Notice that the ID for Photoshop Extended
(PHXS) is different from the ID for Photoshop (PHSP).

 Verify that the product locale matches the one listed in the manifest file, or that the locale is given as
"All".

 Verify the path given in the Extension/DispatchInfo/MainPath element. The path must be relative to
the extension's root folder.

 Verify that the extension has been successfully copied to the Adobe Service Manager’s extensions
folder. For more details, refer to “Deploying an unsigned extension” on page 13.

If the problem persists, check the host application’s CEP log for possible errors; see “System logs” on
page 18.

Removing an extension

You can use the Extension Manager to remove an extension.

1. Select the extension in the list of installed programs.

2. Choose File > Remove Extension.

The Extension Manager removes it both from the file system, and from the displayed list of currently
installed extensions.

Remote debugging

CEP 5.0 supports remote debugging for HTML/JavaScript extensions using the Chrome debugger.

To use this method, you must specify debug ports in a mapping file in your extension's root folder. You can
then open the debug port for the host application from a Chrome browser and use the Chrome
debugging tools. For example, if you have specified the debug port 8088 for Photoshop, and you open
your extension in Photoshop, open the Chrome browser and go to http://localhost:8088.

http://localhost:8088

CHAPTER 4: Packaging and Signing your Extension for Deployment Running an extension 36

To specify the debug ports, create a special file named “.debug” and place it in your extension's root
folder; for example, MyExtension\.debug. This is a special file name in both Windows and Mac OS, and
you must use the command line to create it:

 In Windows, use copy con .debug and CTRL Z to create the empty file.

 In Mac OS, use touch .debug to create the empty file.

Edit this file to include valid remote debug ports for all applications you wish to debug, in the Extension
Manifest XML format for <Host> specifications. Valid Port values are in the range 1024 to 65534.

For example, for a bundle that includes four extensions, the file might look like this:

<?xml version="1.0" encoding="UTF-8"?>
<ExtensionList>
 <Extension Id="com.adobe.CEPHTMLTEST.Panel1">
 <HostList>
 <Host Name="PHXS" Port="8000"/>
 <Host Name="IDSN" Port="8001"/>
 <Host Name="AICY" Port="8002"/>
 <Host Name="ILST" Port="8003"/>
 <Host Name="PPRO" Port="8004"/>
 <Host Name="PRLD" Port="8005"/>
 <Host Name="FLPR" Port="8006"/>
 </HostList>
 </Extension>
 <Extension Id="com.adobe.CEPHTMLTEST.Panel2">
 <HostList>
 <Host Name="PHXS" Port="8100"/>
 <Host Name="IDSN" Port="8101"/>
 <Host Name="AICY" Port="8102"/>
 <Host Name="ILST" Port="8103"/>
 <Host Name="PPRO" Port="8104"/>
 <Host Name="PRLD" Port="8105"/>
 <Host Name="FLPR" Port="8106"/>
 </HostList>
 </Extension>
 <Extension Id="com.adobe.CEPHTMLTEST.ModalDialog">
 <HostList>
 <Host Name="PHXS" Port="8200"/>
 <Host Name="IDSN" Port="8201"/>
 <Host Name="AICY" Port="8202"/>
 <Host Name="ILST" Port="8203"/>
 <Host Name="PPRO" Port="8204"/>
 <Host Name="PRLD" Port="8205"/>
 <Host Name="FLPR" Port="8206"/>
 </HostList>
 </Extension>
 <Extension Id="com.adobe.CEPHTMLTEST.Modeless">
 <HostList>
 <Host Name="PHXS" Port="8300"/>
 <Host Name="IDSN" Port="8301"/>
 <Host Name="AICY" Port="8302"/>
 <Host Name="ILST" Port="8303"/>
 <Host Name="PPRO" Port="8304"/>
 <Host Name="PRLD" Port="8305"/>
 <Host Name="FLPR" Port="8306"/>
 </HostList>
 </Extension>
</ExtensionList>

 37

5 Event Handling for Extensions

Event handling must take into account the various environment in which events are generated and
received. Extensions that need to exchange information can be running in the same host or in different
hosts. If an extension needs to exchange information with its own host application, it could be
communicating with the host’s ExtendScript interface, or with its native C/C++ interface.

In all frameworks, the basic procedure is similar: in the receiving extension, define a handler callback
function or method for the event or message type of interest, and register your handler in an event or
message listener. You can then add code to the sending extension to create and dispatch events or
messages of the types that you define.

For communication among extensions:

 CEP supports sending and receiving various types of events within an extension, and among
extensions running in the same host application. Extensions can communicate with each other
through the CEP event framework. See “CEP event handling” on page 37“CEP event handling” on
page 37.

 To communicate with extensions running in different host applications, you must create and send
messages through the Interapplication Messaging framework, implemented by the Vulcan API. See
“IPC message handling” on page 39.

COMPATIBILITY NOTE: The CEP GLOBAL scope is no longer supported; you must use Vulcan messaging for
interapplication communication.

To communicate with the plug-in API defined for your host application, we provide special-purpose
libraries.

 The JavaScript PlugPlugExternalObject allows you to call your host’s ExtendScript API. See “Event
passing between CEP and ExtendScript” on page 40

An extension that combines native code with an HTML/JavaScript interface is known as a hybrid. See
Chapter 6, “Creating a Hybrid Extension."

CEP event handling
Even ts are represented in the CEP library by the CSEvent class. Instances of this class have a type property
that reflects the kind of event that has occurred, and a data property that allows you to send arbitrary
data, including JavaScript object.

Event instances are passed to extensions in notifications. Use JavaScript methods in the CEP library to
register event handlers for specific, predefined types of CEP events. See “CEP host application events” on
page 41; additional event types are defined by specific host applications. You can also define your own
event types, and can create and dispatch events of those types.

The csInterface.addEventListener() method registers a handler for a CEP event of a given type. The
method supports both named and anonymous (in-line) event-handler callback functions, and shown in
this code snippet:

// Create your local CSInterface instance
 var csInterface = new CSInterface();

CHAPTER 5: Event Handling for Extensions CEP event handling 38

 // Create a named event handler callback function
 function myEventHandler(event)
 {

console.log(“type=” + event.type + “, data=” + event.data);
 }
 // Register the named event handler
 CSInterface.addEventListener(“cep.sender.event.message”, myEventHandler);

 // Register an anonymous (in-line) event handler
 // (the second argument is the callback function definition)
 csInterface.addEventListener(“cep.sender.event.message”,
 function (event) {

console.log(“type=” + event.type + “, data=” + event.data);}
)

To remove a registered handler for a given event type, call csInterface.removeEventListener().

Sending CEP events

You can create a CSEvent object and dispatch it using CSInterface.dispatchEvent().

In your event-handler callback, you can access the properties of the event object. For example, this
anonymous handler function retrieves the event type and event data:

csInterface.addEventListener(“cep.sender.event.message”, function (event)
 { console.log(“type=” + event.type + “, data=” + event.data); }
); // Anonymous function is the second parameter

You can pass JavaScript objects as Event.data. For example:

 var csInterface = new CSInterface();
 csInterface.addEventListener(“cep.sender.event.message”, function (event)
 {
 var obj = event.data;
 console.log(“type=” + event.type + “, data.property1=” + obj.p
 }
); // Anonymous handler function expects data to be an object

Here are some examples of different ways to create and dispatch events in JavaScript:

 // Create an event of a given type, set the data, and send
 var csInterface = new CSInterface();
 var event = new CSEvent("cep.sender.event.message", "APPLICATION");
 event.data = "This is a test!";

 csInterface.dispatchEvent(event);

 // Create an event, set all properties, and send
 var event = new CSEvent(); // create empty event

 event.type = "cep.sender.event.message";
 event.scope = "APPLICATION"; // only this scope is defined
 event.data = "This is a test";

 csInterface.dispatchEvent(event);

// Send an object as event data
 var event = new CSEvent("cep.sender.event.message", "APPLICATION");
 var obj = new Object();

CHAPTER 5: Event Handling for Extensions IPC message handling 39

 obj.a = "a";
 obj.b = "b";
 event.data = obj;
 cSInterface.dispatchEvent(event);

Before you send events, you might want to make sure the intended target extension has been loaded. You
can use the requestOpenExtension() method to force a load, then delay sending the event until the
load operation has completed by using setTimeout().

For example, if you are sending from a extension named Sender, and handling the event in an extension
named Receiver:

var csInterface = new CSInterface()
csInterface.requestOpenExtension("Receiver")
setTimeout(function()

{
var event = new CSEvent("cep.sender.event.message");
event.scope = "APPLICATION";
event.data = "Test message."
csInterface.dispatchEvent(event);

},
400);

IPC message handling
If you wish to exchange messages with extensions running in different host applications, the extensions
must include the Vulcan.js library, which implements the IPC Toolkit for inter-application
communication. This library defines the VulcanInterface class with a singleton instance.

 Use the VulcanInterface.addEventListener() and VulcanInterface.removeEventListener()
methods to register and unregister your event handlers for IPC messages. The handler function can be
a method in an object, or a top-level function.

 Use VulcanInterface.dispatchEvent() to send messages.

IPC messages are represented by the VulcanMessage type. A message contains a payload, which is an
arbitrary data string; it can be a JavaScript object. The VulcanInterface class defines setPayload() and
getPayload() methods that you use to create and retrieve the message data.

To define a message type, concatenate a descriptive string to the constant VulcanMessage.TYPE_PREFIX,
whose value, "vulcan.SuiteMessage.", identifies the object as an interapplication message. When you
have created a message object of this type, use setPayload() to add the data content, and
dispatchEvent() to send it. For example:

var interAppMessage = new VulcanMessage (VulcanMessage.TYPE_PREFIX + "myMsgType");
interAppMessage.setPayload("This is the message body");

VulcanInterface.dispatchMessage(interAppMessage);

In the receiving extension, register a handler for the message type you have defined. You handler callback
method or function take a single argument, the VulcanMessage object, and calls getPayload() to extract
the data. For example:

VulcanInterface.addMessageListener (
VulcanMessage.TYPE_PREFIX + "myMsgType",
function(message) {

console.log(VulcanInterface.getPayload(message));}
);

CHAPTER 5: Event Handling for Extensions Event passing between CEP and ExtendScript 40

Before sending a message, you can verify whether the target application has been installed and is running,
and launch an installed application if needed. Use these methods:

VulcanInterface.isAppInstalled()
VulcanInterface.isAppRunning()
VulcanInterface.launchApp()

The application specifier that you pass to these function is a lower-case app name, with an optional
version number:

appname[-version]

For example:

indesign
indesign-10
indesign-10.064
illustrator-18
photoshop

If you omit the specific version number, the latest version is assumed.

Call VulcanInterface.getTargetSpecifiers() to find application specifiers that are available in your
environement.

Event passing between CEP and ExtendScript
A number of desktop applications have ExtendScript APIs, which use a different JavaScript engine from
the one that your extension code uses. To send events between the two engines, you use the ExtendScript
ExternalObject. The PlugPlugExternalObject library defines the ExtendScript class CSEvent, which
allows your ExtendScript code to create and dispatch CEP events.

This library is currently integrated with Photoshop, Illustrator and Premiere Pro CC 2014. It will be added to
other applications; for now, obtain the shared library from the Adobe Extension SDK distribution for use
with other applications, such as InDesign/InCopy CC 2014.

To receive a CEP event from ExtendScript in your HTML extension, set up an event listener for the message
type you define:

var csInterface = new CSInterface()
csInterface.addEventListener("cep.extendscript.event.message",

function() {
console.log(event.data);}

);

In your ExtendScript code for an application that integrates the library, simply load the
PlugPlugExternalObject shared library. This is done once, preferably at start of your script.

try {
var xLib = new ExternalObject("lib:\PlugPlugExternalObject");
}

catch(e) { alert(e); }

You can then use the library functions to create and dispatch a CEP event:

function dispatchCepEvent(in_eventType, in_message) {
if (xlib) {

var eventObj = new CSXSEvent();
eventObj.type = in_eventType;

CHAPTER 5: Event Handling for Extensions Handling host application events 41

eventObj.data = in_message;
eventObj.dispatch();
}

}

dispatchCepEvent(“cep.extendscript.event.message”,”Update the UI”);

For an application such as InDesign CC 2014 that does not yet integrate the shared library, you must
indicate the path to where you have installed it. For example, this code assumes you have installed the
PlugPlugExternalObject shared library in the same folder as your script:

try {
var xLib = null;
var ppLibFile =

File(File($.fileName).parent).fullName+"/PlugPlugExternalObject");
if (ppLibFile.exists) {

var xLib = new ExternalObject("lib:"+ ppLibFile.fullName);
}

else {
throw new Error("Can't find PlugPlugExternalObject: "

+ppLibFile.fullName+,$.fileName,$.line);
}

}
catch(e) { alert(e); }

Handling host application events
Some applications that have ExtendScript interfaces have their own ExtendScript event systems, and
define application events of many types. To fullly integrate your extension with the application, you can
define CEP event listeners that listen for and respond to these application-specific events.

CEP host application events

These basic application event types are defined and supported by Creative Cloud desktop applications.
Additional application-specific event types are defined by some applications.

Event type Sent after Supported in hosts

documentAfterActivate Document has been activated (new
document created, existing document
opened, or open document got focus)

InDesign/InCopy
Illustrator

documentAfterDeactivate Active document has lost focus Photoshop
InDesign/InCopy
Illustrator

dcoumentAfterSave Document has been saved Photoshop
InDesign/InCopy

CHAPTER 5: Event Handling for Extensions Handling host application events 42

CEP application event parameters

The event object passed in an event notification contains these parameters, set by the sending host
application:

Handling Photoshop ExtendScript events

You can register callback functions for Photoshop events by dispatching a CEP event of type
“com.adobe.PhotoshopRegisterEvent”. The event must include the unique string identifier (type ID) for
the Photoshop event you are registering. See Photoshop documentation for a full list of Photoshop events
and their unique IDs.

For example:

var event = new CSEvent(“com.adobe.PhotoshopRegisterEvent”, “APPLICATION”);
event.extensionId = csInterface.getExtensionID();
event.appId = csInterface.getApplicationID();

applicationBeforeQuit Host gets signal to begin termination InDesign/InCopy

applicationActivate Host gets activation event from operating
system

Photoshop
InDesign/InCopy
Illustrator

Mac OS only:
Premiere Pro
Prelude

Parameter Value

type documentAfterActivate
documentAfterDeactivate
dcoumentAfterSave
applicationBeforeQuit
applicationActivate

EventScope APPLICATION

appId The host application name; see “Supported applications” on page 6.

extensionId null

data The event payload.

 For application events, this is null.

 For document events, an XML string in this format:

<eventType>
<url> URLToFileOnDisk </url>
<name> fileName </name>

</eventType>

For new, unsaved files, the URL element is empty.

Event type Sent after Supported in hosts

CHAPTER 5: Event Handling for Extensions Handling host application events 43

event.data = “1131180832” //Close document event

csInterface.dispatchEvent(event);

In your extension, register a handler for the PhotoshopCallback event:

csInterface.addEventListener(“PhotoshopCallback”, callback)

The following example assumes that you have a simple HTML extension with a button that performs an
operation on a Photoshop document. The code shows how to enable or disable the button based on the
existence of an active document.

 The registerPhotoshopEvent() function registers handler for the Photoshop document events
“Open” and “Close”.

 The csInterface.addEventListener() call registers a callback for the PhotoshopCallback event that is
triggered each time the user opens or closes a document in Photoshop.

(function () {
var csInterface = new CSInterface()
function init() {

themeManager.init();
// set the button state when the panel/dialog/window is opened the first time

csInterface.evalScript("return (app.documents.length > 0)", setButtonState)

function registerPhotoshopEvent(in_eventId) {
var event = new CSEvent("com.adobe.PhotoshopRegisterEvent",

"APPLICATION");
event.extensionId = csInterface.getExtensionID();
event.appId = csInterface.getApplicationID();
event.data = in_eventId
csInterface.dispatchEvent(event);
}

csInterface.addEventListener("PhotoshopCallback" , function(event) {
csInterface.evalScript("return (app.documents.length > 0)",

setButtonState)
});

function setButtonState(in_msg) {
var disabled = (in_msg.data != "true");
if ($('#btn_applyFilter').prop("disabled") != disabled) {

$('#btn_applyFilter').prop("disabled",disabled);
}

};

$('#btn_applyFilter').click(function() {
// perform your Photoshop operation here

});

var closeEventid = "1131180832"
var openEventId = "1332768288"
registerPhotoshopEvent(closeEventid);
registerPhotoshopEvent(openEventId);

}

init();
}());

CHAPTER 5: Event Handling for Extensions Handling host application events 44

Handling InDesign ExtendScript events

The InDesign ExtendScript DOM defines a wide variety of application-specific events.

Here is an example that assumes that you have a simple HTML extension with a button that performs an
operation over selected text in an InDesign document. It shows how to enable or disable the button based
on the user selection.

The following code is the content of an ExtendScript JSX file, which you would typically add to your
extension manifest as:

<ScriptPath> ./jsx/[scriptName].jsx </ScriptPath>

In this script:

 The app.addEventListener() call registers an interest in the event “afterSelectionChanged”.

 The callback function hasSelectedText() checks if the user has selected text in the current
document, and then dispatches the CEP event “indesign.cep.event.hasSelectedText”, which is
handled by the HTML extension.

try {
var xLib = null;
var plugExternalLib =

File(File($.fileName).parent).fullName+"/PlugPlugExternalObject");

if (plugExternalLib.exists) {
var xLib = new ExternalObject("lib:"+ plugExternalLib.fullName);
}

else {
throw new Error("Can't find PlugPlugExternalObject: "

+plugExternalLib.fullName,$.fileName,$.line);
}

app.addEventListener("afterSelectionChanged",hasSelectedText,false);
}

catch(e) { alert(e); }

function dispatchCepEvent(in_eventType,in_message) {
if (xlib) {

var eventObj = new CSXSEvent();
eventObj.type = in_eventType;
eventObj.data = in_message;
eventObj.dispatch();
}

}

// Checks if there is any text selected
function hasSelectedText(in_event) {

try {
do {

var retVal = false;
if (! in_event) { break; }

if (! (in_event.target instanceof Document ||
in_event.target instanceof LayoutWindow)) {break; }

if (in_event.target.selection.length != 1) { break; }

CHAPTER 5: Event Handling for Extensions Handling host application events 45

var selection = in_event.target.selection[0];
if (! (selection.parent instanceof Story)) { break; }
retVal = (selection.characters.length > 0)

} while (false);

dispatchCepEvent(“indesign.cep.event.hasSelectedText”,retVal);
}
catch(e) { alert(e.line + “: “ + e) }

}

The following is an example of JavaScript code that could be used to control the UI of an HTML extension.

 The call to csInterface.addEventListener() registers a listener for the event
“indesign.cep.event.hasSelectedText”.

 Theevent handler callback setButtonState() shows how to retrieve the data from the event object.

(function () {
var csInterface = new CSInterface()

function init() {
themeManager.init();
csInterface.addEventListener("indesign.cep.event.hasSelectedText",

setButtonState)

function setButtonState(in_event) {
var disabled = (in_event.data != "true")
if ($('#btn_applyFormat').prop(“disabled”) != disabled) {

$('#btn_applyFormat').prop("disabled",disabled);
}

};
}
init();

}());

 46

6 Creating a Hybrid Extension

A hybrid extension is a package that combines an Adobe extension with an application-specific extension
or plug-in that uses the native C/C++ or scripting API. This allows you to build extensions with rich
interfaces and still take advantage of the extended native API for the host application.

You must package the several components of a hybrid extension into a ZXP package. The Extension
Manager installs the package on the user’s machine as a single extension; it looks the same as any other
extension to the end user.

As an extension developer, you can choose to use application-specific C/C++ plug-ins or scripting
extensions to extend Adobe desktop applications, in addition to your HTML/JavaScript extension
component. You might want to do this, for example, when:

 You have legacy code that you still want to support.

 The feature you are developing requires a capability supported by the native scripting or C/C++ API
layer, that is not accessible via your Adobe extension; for example, some applications allow you to
create custom menus using C++ extensibility.

 You have CPU-intensive tasks to perform that are more suited to C++ than to JavaScript.

Writing hybrid extensions
If you are already familiar with writing Adobe extensions and native application extensions (for example, a
Photoshop or InDesign C++ extension, or a Dreamweaver JavaScript extension) there is little more you
need to learn. The two parts of a hybrid extension are implemented as standalone components.

 Create the Adobe Application Extension using the Adobe Extension SDK.

 Create your C/C++ or scripting API plug-in using the application-specific SDK and recommended
tools. If you have never built a native plug-in for your host application, check the application-specific
SDKs for details; see Adobe Developer Connections.

The only thing you need to do is package them together so that they can be deployed in the user’s
environment as a single extension.

Testing a hybrid extension
During development, test the components of your hybrid extension separately.

 Launch and debug the Adobe Extension SDK component as described in Chapter 2, “Running and
Debugging your Extension."

 Install the application-specific plug-in or extension in the host as instructed in the application-specific
SDK. Debug it using the recommended development tools, such as XCode or Visual Studio.

To install the plug-in component, copy the files to the Plug-ins or Extensions folder, or point the host
application to your plug-in build folder. For example, InDesign looks for its plug-ins in:

<InDesign installation location>/Plug-ins/

CHAPTER 6: Creating a Hybrid Extension Communicating between components 47

For details of how to package your hybrid extension for deployment, see “Packaging a hybrid extension”
on page 31.

Communicating between components
Adobe offers the PlugPlug library for communication between C/C++ and JavaScript. You can include
these libraries directly in Photoshop and InDesign native plug-ins.

The PlugPlug library exposes these functions to the C++ plug-in:

PlugPlugLoadExtension()
PlugPlugUnloadExtension()
PlugPlugDispatchEvent()
PluPlugAddEventListener()
PlugPlugRemoveEventListener()

For ease of use, InDesign and Illustrator SDKs wrap these functions around classes. Photoshop and
Premiere Pro do not directly expose the PlugPlug functions, but you can easily do so, as shown in the
samples that are provided with the Adobe Extension SDK.

InDesign hybrid extensions

There are two basic techniques for implementing two-way communication between an HTML extension
and a native InDesign plug-in:

 Add an ExtendScript scripting interface to your plug-in, and call evalScript() in the HTML
extension to run the ExtendScript functions that you define:

new CSInterface().evalScript("app.speak");

 Send CEP events between the native plug-in and the HTML extension. This is easier, and is
recommended.

This example of sending and receiving CEP events in a native plug-in is based on the sample project
ScriptingComms, which is included in the InDesign SDK.

#include "ICSXSPlugPlugEventHandler.h"
#include "adobe/unicode.hpp" // for adobe::to_utf8
#include "FileTypeRegistry.h"

InterfacePtr plugPlug(GetExecutionContextSession(), UseDefaultIID());

PMString csxsEventStr;
csxsEventStr.SetCString("Hello from CPP!");
PMString eventData(csxsEventStr);
std::string csxsEventUtf8;
adobe::to_utf8(csxsEventStr.begin(), csxsEventStr.end(),

 std::back_inserter(csxsEventUtf8));

ICSXSPlugPlugEventHandler::CSXSEvent responseEvent;
responseEvent.type = "com.adobe.indesign.scriptingcomms.html";
responseEvent.scope = ICSXSPlugPlugEventHandler::kEventScope_Application;
responseEvent.extensionId = nil;
responseEvent.data = csxsEventUtf8.c_str();

if (LocaleSetting::GetLocale().IsProductFS(kInDesignProductFS)) {
// as defined in ICSXSPlugPlugEventHandler.h

CHAPTER 6: Creating a Hybrid Extension Communicating between components 48

responseEvent.appId = kIDEnigmaCode;
}

else {
// as defined in ICSXSPlugPlugEventHandler.h
responseEvent.appId = kICEnigmaCode;
}

plugPlug->DispatchPlugPlugEvent(&responseEvent);

This adds an event listener for CSXS events. A good place to create such a message listener is in a
startup/shutdown service, to ensure that the listener is created on InDesign startup.

InterfacePtr plugPlug(GetExecutionContextSession(), UseDefaultIID());
plugPlug->AddPlugPlugEventListener(“com.adobe.indesign.scriptingcomms.cpp”,

&MessageEventListener, nil);

This callback method handles a received message by displaying an alert dialog ,and then sends a message
back to the HTML Extension.

MessageEventListener(const ICSXSPlugPlugEventHandler::CSXSEvent* const csxsEvent,
void* const context) {

// Display received data in alert dialog..
PMString receivedData = PMString("Message received: ");
receivedData.Append(csxsEvent->data);
receivedData.SetTranslatable(kFalse);
CAlert::InformationAlert(receivedData);
// Send a message back to the HTML extension..
InterfacePtr<ICSXSPlugPlugEventHandler> plugPlug(GetExecutionContextSession(),

UseDefaultIID());
PMString csxsEventStr;
csxsEventStr.SetCString("Hello from CPP!");
PMString eventData(csxsEventStr);
std::string csxsEventUtf8;
adobe::to_utf8(csxsEventStr.begin(), csxsEventStr.end(),
std::back_inserter(csxsEventUtf8));
ICSXSPlugPlugEventHandler::CSXSEvent responseEvent;
responseEvent.type = "com.adobe.indesign.scriptingcomms.html";
responseEvent.scope = ICSXSPlugPlugEventHandler::kEventScope_Application;
responseEvent.extensionId = nil;
responseEvent.data = csxsEventUtf8.c_str();
if (LocaleSetting::GetLocale().IsProductFS(kInDesignProductFS)) {

responseEvent.appId = kIDEnigmaCode;
}

else {
responseEvent.appId = kICEnigmaCode;

}
plugPlug->DispatchPlugPlugEvent(&responseEvent);

}

Sending and receiving events from JavaScript

This JavaScript code dispatches a CEP event to native event listener:

var csInterface = new CSInterface()
var event = new CSEvent("com.adobe.indesign.scriptingcomms.cpp")
event.scope = "APPLICATION";
event.appId = csInterface.getApplicationId()
event.extensionId = "com.adobe.indesign.scriptingcomms.html";
event.data = "Hello from HTML!";
csInterface.dispatchEvent(event);

CHAPTER 6: Creating a Hybrid Extension Communicating between components 49

This adds an event listener for an InDesign event:

csInterface.addEventListener("com.adobe.indesign.scriptingcomms.html",
function(event) {

alert("Message received: " + event.data);
}

);

Illustrator hybrid extensions

Illustrator SDK defines two classes to manage the communication between plug-ins and HTML extensions:

 The SDKPlugPlug class loads and unloads the PlugPlug library, and exposes these functions:

PlugPlugLoadExtension()
PlugPlugUnloadExtension()
PlugPlugDispatchEvent()
PluPlugAddEventListener()
PlugPlugRemoveEventListener()

 The HtmlUIController class contains these virtual functions:

LoadExtension()
UnloadExtension()
RegisterCSXSEventListeners()
RemoveEventListeners()

RegisterCSXSEventListeners() and RemoveEventListeners() are purely virtual functions, and
must be implemented in a derived class.

The source and binary files that define the functions are part of the Illustrator SDK:

Illustrator_SDK_root/samplecode/common/includes
Illustrator_SDK_root/samplecode/common/source

This example code shows how a plug-in can receive an event from an HTML extension and then send an
event straight back to the extension. The call to RegisterCSXSEventListeners() adds an event listener
and SendMessageToHtml() constructs and dispatches a CEP Event.

The code snippet is assumed to be part of a subclass called PanelController, derived from
HtmlUIController, which implements the virtual functions RegisterCSXSEventListeners() and
RemoveEventListeners().

#define EXTENSION_ID "comms"
static const char* EVENT_FROM_HTML = "com.adobe.illustrator.event.fromHTML";
static const char* EVENT_FROM_AISDK = "com.adobe.illustrator.event.fromAISDK";
static const char* ILST_APP = "ILST";

PanelController::PanelController()
:HtmlUIController(EXTENSION_ID)
{}

CHAPTER 6: Creating a Hybrid Extension Communicating between components 50

csxs::event::EventErrorCode PanelController::RegisterCSXSEventListeners() {
csxs::event::EventErrorCode result = csxs::event::kEventErrorCode_Success;
do {

result = htmlPPLib.AddEventListener(EVENT_FROM_HTML,handleMessage,this);
if (result != csxs::event::kEventErrorCode_Success) { break; }
}

while (false);
return result;
}

csxs::event::EventErrorCode PanelController::RemoveEventListeners() {
csxs::event::EventErrorCode result = csxs::event::kEventErrorCode_Success;
do {

result = htmlPPLib.RemoveEventListener(EVENT_FROM_HTML,handleMessage,this);
if (result != csxs::event::kEventErrorCode_Success) { break; }
}

while (false);
return result;
}

static void handleMessage(const csxs::event::Event* const eventParam,
void* const context) {

sAIUser->MessageAlert(ai::UnicodeString(eventParam->data));
AppContext appContext(gPlugin->GetPluginRef());
PanelController* panelController = (PanelController*) context;
panelController->SendMessageToHtml();
}

ASErr PanelController::SendMessageToHtml() {
AIErr error = kNoErr;
std::string msgStr("Hello back, from the AI SDK");
csxs::event::Event event = {EVENT_FROM_AISDK,

csxs::event::kEventScope_Application,
ILST_APP,
NULL,
msgStr.c_str()};

htmlPPLib.DispatchEvent(&event);
return error;
}

You can only register event listeners after you have been notified that the setup of the PlugPlug library
has been completed. Your Plugin class should add a notifier on StartupPlugin, so that it receives this
notification:

error = sAINotifier->AddNotifier(fPluginRef, kSimplePluginName,
kAICSXSPlugPlugSetupCompleteNotifier,
&fPlugPlugSetupCompleteNotifier);

 Define fPlugPlugSetupCompleteNotifier(AINotifierHandle) as a private member of the
PanelController class.

SErr SimplePlugin::Notify(AINotifierMessage* message) {
ASErr error = kNoErr;
if (message->notifier == fPlugPlugSetupCompleteNotifier) {

// fPanelController is an instance of PanelController
if (fPanelController != NULL)
fPanelController->RegisterCSXSEventListeners();

}
return error;
}

CHAPTER 6: Creating a Hybrid Extension Communicating between components 51

To remove event listeners on ::ShutdownPlugin:

ASErr SimplePlugin::ShutdownPlugin(SPInterfaceMessage *message) {
if (fPanelController != NULL) {

fPanelController->RemoveEventListeners();
delete fPanelController;
fPanelController = NULL;
Plugin::LockPlugin(false);

}
return kNoErr;

}

Sending and receiving CEP events from JavaScript

This JavaScript code dispatches a CEP event to native event listener:

var csInterface = new CSInterface()
var event = new CSEvent("com.adobe.illustrator.event.fromHTML")
event.scope = "APPLICATION";
event.appId = csInterface.getApplicationId()
event.extensionId = "com.adobe.illustrator.simpleUI";
event.data = "Hello from HTML!";

csInterface.dispatchEvent(event);

To add an event listener for an Illustrator event:

csInterface.addEventListener("com.adobe.illustrator.event.fromAISDK",
function(event) {

alert("Message received: " + event.data);
}

);

 52

7 Localizing an Extension

In order to localize your extension, you must ceate resource files for your project. Your localized string
resources can be used in both the HTML components that make up your UI, and in a number of places in
the manifest.

 Provide the localized string resources for each supported locale as part of your extension, using the
folder structure and naming conventions described in “Localization resources” below.

 To localize elements of your HTML interface, you must first initialize the JavaScript ResourceBundle
object with the current locale, then use that object in your JavaScript code to retrieve the strings for
the current locale. See “Localizing the extension’s UI” on page 53.

 You can also localize strings, such as your product description, that are taken from your manifest and
displayed in Adobe Extension Manager. See “Localizing the extension’s manifest file” on page 53.

Localization resources
You must provide a resource file for each supported locale, in the proper location in your root extension
folder, using this naming convention for both the folders and files. Each file defines a set of string in the
form of key-value pairs, so that your JavaScript code and the Adobe Extension Manager can access each
string by its key.

Define your localization string resources in a set of files that contain key/value pairs in UTF-8 format. Name
each such file "messages.properties", and store it in a locale-specific subfolder of a folder called
"locale" in the root folder of your project.

For example:

#locale/es_ES/messages.properties
menuTitle=Mi extension
buttonLable=Mi boton
...

If you have decided that your extension should run in all languages and you do not have specific support
for a locale, the resources in the default file are used. The application looks for a properties file at the top
level of the locale/ folder to use as the default resource file.

#locale/messages.properties
menuTitle=My extension
buttonLabel=My button
...

If the application UI locale exactly matches one of the locale-specific folders, those resources are used in
your extension interface. The match must be exact; for instance, if you have resources for fr_FR but the
application locale is fr_CA, the default properties are used.

You must copy the locale/ folder and its contents into the project’s Output folder before you attempt to
run or debug the extension.

To make a localized string available to HTML controls, use this special format in the locale resource file:

keyName.value=string value

CHAPTER 7: Localizing an Extension Localizing the extension’s UI 53

For example:

buttonLabel.value=My button

This allows you to reference the string from acustom attribute, data-locale, which is available for
elements that normally have a string value in the value attribute. See example below.

Localizing the extension’s UI
You must make the localization resources available as part of initializing your extension during load.

Call the JavaScript method CSInterface.initResourceBundle() in your extension’s initialization
routine in order to initialize the locale resources.

var csInterface = new CSInterface();
csInterface .initResourceBundle();

At run time, the extension infrastructure loads the resources that match the locale used in the host
application, or the default messages.properties file if no matching folder is found.

Your JavaScript code can use the ResourceBundle object to access the localized strings for the current
locale. For example, this simple code snippet accesses the localized string associated with the key
"menuTitle".

var cs = new CSInterface();
// Initialize for the current locale of the host application.
var resourceBundle = cs.initResourceBundle();

// Access a localized string by its key in your JavaScript code
<script type="text/javascript">

document.write(resourceBundle.menuTitle);
</script>

To use a localized string in an HTML control, use the custom attribute, data-locale, which is available for
elements that normally have a string value in the value attribute.

 This attribute must reference a string that is defined in the resource file using the special format
keyName.value=string value.

 Supply the data-locale="keyName" attribute instead of the value attribute for the control.

For example, suppose you have defined this localized string resource:

submitButton.value=Submit

This HTML element retrieves the localized string and displays in an HTML input control:

<input type="submit" value="" data-locale="submitButton"/>

Localizing the extension’s manifest file
If you have provided localization resources, you can localize values within a manifest's DispatchInfo/UI
element by replacing the value with a messages.properties key, preceded by the percent symbol. For
example:

<Menu>%menuTitle</Menu>

CHAPTER 7: Localizing an Extension Localizing the extension’s manifest file 54

When your extension runs, the application looks for this key in the locale-specific messages.properties
file, and uses the value to display the menu item.

You can use this mechanism to localize other information in the manifest file. For example, to have
locale-dependent default extension geometry, or to load a different icon:

<Menu>%menuTitle</Menu>
<Geometry>

<Size>
<Height>%height</Height>
<Width>%width</Width>

</Size>
</Geometry>

<Icons>
<Icon Type="Normal">%icon</Icon>
<Icon Type="RollOver">%icon</Icon>

</Icons>

 55

8 CEP Engine JavaScript Extension Reference

CEP (formerly CSXS) Extensions extend the functionality of the host application that they run in.
Extensions are loaded into applications through the PlugPlug Library architecture. Starting from version
4.0, CEP supports the use of HTML/JavaScript technology to develop extensions.

In order to use the file I/O functionality provided by the CEP engine in an HTML5/JavaScript application
extension, Adobe provides a JavaScript bridge to the native C++ CEP engine:

CEPEngine_extension.js

It is not necessary to include this library in your extension project; it is integrated into CEP 5. The engine
defines:

 “Extension control functions” on page 55

 “File I/O functions” on page 60

Extension control functions
These functions allow you to start, query, and terminate extensions. The functions are presented here in
alphabetical order.

CreateProcess() Runs the executable file for an extension in a new process.

GetWorkingDirectory Retrieves the working directory of an extension process.

IsRunning() Reports whether an extension process is currently running.

OnQuit() Registers an on-quit callback handler method for an extension
process.

RegisterExtensionUnloadCallback() Registers a callback function for extension unload.

SetPanelFlyoutMenu() Creates a new flyout menu for an extension panel.

SetupStdErrHandler() Registers up a standard-error handler for an extension process.

SetupStdOutHandler() Registers a standard-output handler for an extension process.

Terminate() Terminates an extension process.

UpdatePanelFlyoutMenu() Adds or modfiies a menu item in the flyout menu for the extension
panel.

WaitFor() Waits for an extension process to quit.

WriteStdIn() Writes data to the standard input of an extension process.

http://adobe.ly/1p2Onnl

CHAPTER 8: CEP Engine JavaScript Extension Reference Extension control functions 56

CreateProcess()

Runs the executable file for an extension in a new process.

CreateProcess(args)

RETURNS: An object with these properties:

 data: The process ID (pid) of the new process (an integer), or -1 on error.

 err: The status of the operation, one of:
NO_ERROR

ERR_UNKNOWN

ERR_INVALID_PARAMS

ERR_EXCEED_MAX_NUM_PROCESS

ERR_NOT_FOUND

ERR_NOT_FILE

GetWorkingDirectory

Retrieves the working directory of an extension process.

GetWorkingDirectory(pid)

RETURNS: An object with these properties:

 data: The path of the working directory.

 err: The status of the operation, one of:
NO_ERROR

ERR_UNKNOWN

ERR_INVALID_PARAMS

ERR_INVALID_PROCESS_ID

IsRunning()

Reports whether an extension process is currently running.

IsRunning(pid)

RETURNS: An object with these properties:

 data: True if the process is running, false if not.

 err: The status of the operation, one of:
NO_ERROR

args Array of
String

The path to the executable, followed by the arguments to that
executable.

pid Number The process ID of the extension, as returned by CreateProcess().

pid Number The process ID of the extension, as returned by CreateProcess().

CHAPTER 8: CEP Engine JavaScript Extension Reference Extension control functions 57

ERR_UNKNOWN

ERR_INVALID_PARAMS

ERR_INVALID_PROCESS_ID

OnQuit()

Registers an on-quit callback handler method for an extension process.

OnQuit(pid, callback)

RETURNS: An object with these properties:

 err: The status of the operation, one of:
NO_ERROR

ERR_UNKNOWN

ERR_INVALID_PARAMS

ERR_INVALID_PROCESS_ID

RegisterExtensionUnloadCallback()

Registers a callback function for extension unload. If called more than once, the last callback that is
successfully registered is used.

RegisterExtensionUnloadCallback (callback)

RETURNS: An object with these properties:

 err: The status of the operation, one of:
NO_ERROR

ERR_INVALID_PARAMS

SetPanelFlyoutMenu()

Creates a new flyout menu for an extension panel. You must register a handler for the
flyoutMenuClicked event to respond to events in this menu. The Event.data is an object with attributes
menuId and menuName.

SetPanelFlyoutMenu(menu)

Here is an example of XML that defines a menu:

<Menu>
 <MenuItem Id="menuItemId1" Label="TestExample1" Enabled="true" Checked="false"/>
 <MenuItem Label="TestExample2">
 <MenuItem Label="TestExample2-1" >

pid Number The process ID of the extension, as returned by CreateProcess().

callback Function The handler function for the on-quit callback.

callback Function The handler function for the extension-unload callback.

menu String An XML string that defines the menu.

CHAPTER 8: CEP Engine JavaScript Extension Reference Extension control functions 58

 <MenuItem Label="TestExample2-1-1" Enabled="false" Checked="true"/>
 </MenuItem>
 <MenuItem Label="TestExample2-2" Enabled="true" Checked="true"/>
 </MenuItem>
 <MenuItem Label="---" />
 <MenuItem Label="TestExample3" Enabled="false" Checked="false"/>
</Menu>

SetupStdErrHandler()

Registers a standard-error handler for an extension process.

SetupStdErrHandler(pid, callback)

RETURNS: An object with these properties:

 err: The status of the operation, one of:
NO_ERROR

ERR_UNKNOWN

ERR_INVALID_PARAMS

ERR_INVALID_PROCESS_ID

SetupStdOutHandler()

Registers a standard-output handler for an extension process.

SetupStdOutHandler(pid, callback)

RETURNS: An object with these properties:

 err: The status of the operation, one of:
NO_ERROR

ERR_UNKNOWN

ERR_INVALID_PARAMS

ERR_INVALID_PROCESS_ID

Terminate()

Terminates an extension process.

Terminate(pid)

RETURNS: An object with these properties:

pid Number The process ID of the extension, as returned by CreateProcess().

callback Function The handler function for the standard-error callback.

pid Number The process ID of the extension, as returned by CreateProcess().

callback Function The handler function for the standard-output callback.

pid Number The process ID of the extension, as returned by CreateProcess().

CHAPTER 8: CEP Engine JavaScript Extension Reference Extension control functions 59

 err: The status of the operation, one of:
NO_ERROR

ERR_UNKNOWN

ERR_INVALID_PARAMS

ERR_INVALID_PROCESS_ID

UpdatePanelFlyoutMenu()

Adds or modfiies a menu item in the flyout menu for the extension panel. Menu items can contain
sub-items.

UpdatePanelFlyoutMenu(menuItemLabel, enabled, checked)

WaitFor()

Waits for an extension process to quit.

WaitFor(pid)

RETURNS: An object with these properties:

 err: The status of the operation, one of:
NO_ERROR

ERR_UNKNOWN

ERR_INVALID_PARAMS

ERR_INVALID_PROCESS_ID

WriteStdIn()

Writes data to the standard input of an extension process.

SetupStdOutHandler(pid, callback)

RETURNS: An object with these properties:

 err: The status of the operation, one of:
NO_ERROR

ERR_UNKNOWN

menuItemLabel String An XML string that defines a new menu item. See example for
SetPanelFlyoutMenu()

enabled Boolean True for the new menu item to be enabled, false for it to be
disabled (grayed out).

checked Boolean True for the new menu item to be displayed with a
platform-specific selection indicator.

pid Number The process ID of the extension, as returned by CreateProcess().

pid Number The process ID of the extension, as returned by CreateProcess().

data String The data to write.

CHAPTER 8: CEP Engine JavaScript Extension Reference File I/O functions 60

ERR_INVALID_PARAMS

ERR_INVALID_PROCESS_ID

File I/O functions
These file I/O functions are defined as covers for the native-code versions. The functions are presented
here in alphabetical order.

NOTE: Currently, all native file I/O functions are synchronous; aynchronous file I/O is planned.

DeleteFileOrDirectory()

Deletes a file or folder.

DeleteFileOrDirectory(path)

RETURNS: An object with these properties:

 err: The status of the operation, one of:
NO_ERROR

ERR_UNKNOWN

ERR_INVALID_PARAMS

ERR_NOT_FOUND

ERR_NOT_FILE

IsDirectory()

Reports whether an item in the file system is a file or folder.

DeleteFileOrDirectory() Deletes a file or folder.

IsDirectory() Reports whether an item in the file sytem is a file or folder.

MakeDir() Creates a new folder.

OpenURLInDefaultBrowser() Opens a page in the default system browser.

ReadDir() Reads the contents of a folder.

ReadFile() Reads the entire contents of a file.

Rename() Renames a file or folder.

SetPosixPermissions() Sets permissions for a file or folder.

ShowOpenDialog() Displays the platform-specific File Open dialog, allowing the user
to select files or folders.

WriteFile() Writes data to a file, replacing the file if it already exists.

path String The path to the file or folder.

CHAPTER 8: CEP Engine JavaScript Extension Reference File I/O functions 61

IsDirectory(path)

RETURNS: An object with these properties:

 data: An object with these properties:
— isFile: (Boolean) True if the item is a file.
— isDirectory: (Boolean) True if the item is a folder.
— mtime: (DateTime) The modification timestamp of the item.

 err: The status of the operation, one of:
NO_ERROR

ERR_UNKNOWN

ERR_INVALID_PARAMS

ERR_NOT_FOUND

MakeDir()

Creates a new folder.

MakeDir(path)

RETURNS: An object with these properties:

 err: The status of the operation, one of:
NO_ERROR

ERR_UNKNOWN

ERR_INVALID_PARAMS

OpenURLInDefaultBrowser()

Opens a page in the default system browser.

OpenURLInDefaultBrowser(url)

RETURNS: An object with these properties:

 err: The status of the operation, one of:
NO_ERROR

ERR_UNKNOWN

ERR_INVALID_PARAMS

ReadDir()

Reads the contents of a folder.

path String The path to the file or folder.

path String The path to the new folder.

url String The URL of the page to open.

CHAPTER 8: CEP Engine JavaScript Extension Reference File I/O functions 62

ReadDir(path)

RETURNS: An object with these properties:

 data: An array of the names of the contained files (excluding "." and "..").

 err: The status of the operation, one of:
NO_ERROR

ERR_UNKNOWN

ERR_INVALID_PARAMS

ERR_NOT_FOUND

ERR_CANT_READ

ReadFile()

Reads the entire contents of a file.

ReadFile(path, encoding)

RETURNS: An object with these properties:

 data: The file contents.

 err: The status of the operation, one of:
NO_ERROR

ERR_UNKNOWN

ERR_INVALID_PARAMS

ERR_NOT_FOUND

ERR_CANT_READ

ERR_UNSUPPORTED_ENCODING

Encoding conversion

These utility functions are provided for conversion of encoding types:

utf8_to_b64 (str)
b64_to_utf8 (base64str)
binary_to_b64 (binary)
b64_to_binary (base64str)
ascii_to_b64 (ascii)
b64_to_ascii (base64str)

path String The path to the folder.

path String The path to the file.

encoding String Optional. The encoding of the contents of the file, one of:

UTF8 (default)
Base64

CHAPTER 8: CEP Engine JavaScript Extension Reference File I/O functions 63

Rename()

Renames a file or folder. If a file or folder with the new name already exists, reports an error and does not
perform the rename operation.

Rensme(oldPath, newPath)

RETURNS: An object with these properties:

 err: The status of the operation, one of:
NO_ERROR

ERR_UNKNOWN

ERR_INVALID_PARAMS

ERR_NOT_FOUND

ERR_FILE_EXISTS

SetPosixPermissions()

Sets permissions for a file or folder.

SetPosixPermissions(path, mode)

RETURNS: An object with these properties:

 err: The status of the operation, one of:
NO_ERROR

ERR_UNKNOWN

ERR_INVALID_PARAMS

ERR_CANT_WRITE

ShowOpenDialog()

Displays the platform-specific File Open dialog, allowing the user to select files or folders.

ShowOpenDialog(allowMultipleSelection, chooseDirectory,
title, initialPath, fileTypes)

oldPath String The original path to the file or folder.

newPath String The new path to the file or folder.

path String The path to the file.

mode String The new permissions, in numeric format. For example, "0777".

allowMultipleSelection Boolean When true, multiple files/folders can be selected.

chooseDirectory Boolean When true, only folders can be selected. When false,
only files can be selected.

title String Title of the Open dialog. Can be a ZString for
localization.

CHAPTER 8: CEP Engine JavaScript Extension Reference File I/O functions 64

RETURNS: An object with these properties:

 data: An array of the names of the selected files.

 err: The status of the operation, one of:
NO_ERROR

ERR_INVALID_PARAMS

WriteFile()

Writes data to a file, replacing the file if it already exists.

WriteFile(path, data, encoding)

RETURNS: An object with these properties:

 err: The status of the operation, one of:
NO_ERROR

ERR_UNKNOWN

ERR_INVALID_PARAMS

ERR_UNSUPPORTED_ENCODING

ERR_CANT_WRITE

ERR_OUT_OF_SPACE

initialPath String Initial path to display in the dialog. Pass NULL or "" (the
empty string) to display the last path chosen.

fileTypes Array of
String

The file extensions (without the dot) for the types of files
that can be selected. Ignored when
chooseDirectory=true.

path String The path to the file.

data String The data to write.

encoding String Optional. The encoding of the data, one of:

UTF8 (default)
Base64

	Getting Started with the Adobe Extension SDK
	About Adobe Application Extensions
	Developer prerequisites
	Adobe application extensibility architecture
	Underlying technologies

	Anatomy of an HTML/JavaScript extension
	Extension management
	About the Adobe Extension SDK
	Development environment requirements
	Supported applications

	Learning resource links
	HTML5/ CSS3
	JavaScript
	Query
	node.js
	ExtendScript and Adobe SDKs
	C/C++

	Running and Debugging your Extension
	Setting up the debug environment
	Setting the debug mode flag
	Editing the flag in Windows:
	Editing the flag in Mac OS:
	Editing in XCode
	Editing in PlistBuddy

	Setting up remote debugging
	Creating an empty file
	Set up port mapping

	Deploying an unsigned extension
	Debugging your extension
	ExtendScript debugging and logging
	Example: Event-based debugging
	ExtendScript component
	JavaScript component

	Example: Console-based debugging
	ExtendScript component
	JavaScript component

	System logs
	CEP logging

	Creating a Manifest File
	ExtensionManifest
	ExtensionList/Extension
	ExecutionEnvironment
	HostList/Host
	LocaleList/Locale
	RequiredRuntimeList/RequiredRuntime

	DispatchInfoList/Extension/DispatchInfo
	Resources
	Lifecycle
	UI

	Packaging and Signing your Extension for Deployment
	The package format
	Creating the deployment package
	Using the CC Extension Signing Toolkit
	Using ZXPSignCmd
	Example

	How signing works
	Packaging a hybrid extension
	Configuring a hybrid extension

	Installing a packaged and signed extension
	Using Extension Manager
	Testing extension installation
	Troubleshooting the installation

	Running an extension
	Extension does not appear in the application’s Window > Extensions menu
	Removing an extension
	Remote debugging

	Event Handling for Extensions
	CEP event handling
	Sending CEP events

	IPC message handling
	Event passing between CEP and ExtendScript
	Handling host application events
	CEP host application events
	CEP application event parameters

	Handling Photoshop ExtendScript events
	Handling InDesign ExtendScript events

	Creating a Hybrid Extension
	Writing hybrid extensions
	Testing a hybrid extension
	Communicating between components
	InDesign hybrid extensions
	Sending and receiving events from JavaScript

	Illustrator hybrid extensions
	Sending and receiving CEP events from JavaScript

	Localizing an Extension
	Localization resources
	Localizing the extension’s UI
	Localizing the extension’s manifest file

	CEP Engine JavaScript Extension Reference
	Extension control functions
	CreateProcess()
	GetWorkingDirectory
	IsRunning()
	OnQuit()
	RegisterExtensionUnloadCallback()
	SetPanelFlyoutMenu()
	SetupStdErrHandler()
	SetupStdOutHandler()
	Terminate()
	UpdatePanelFlyoutMenu()
	WaitFor()
	WriteStdIn()

	File I/O functions
	DeleteFileOrDirectory()
	IsDirectory()
	MakeDir()
	OpenURLInDefaultBrowser()
	ReadDir()
	ReadFile()
	Encoding conversion

	Rename()
	SetPosixPermissions()
	ShowOpenDialog()
	WriteFile()

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

